|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
For what value of x is f(x)=x^(1/x) a maximum?
f'(x)=x^(1/x-2)(1-lnx)=0,
x=e and gives a maximum of e^(1/e)=1.444667861...
|
|
|
|
Since = 3, consider
|
|
|
|
 |
|
|
|
.
|
|
|
|
|
|
Given that C MRB =
|
|
|
|
 |
|
|
|
 |
|
user90369 (https://math.stackexchange.com/users/332823/user90369), High precision evaluation of the series $\sum_{n=3}^\infty (-1)^n (1-n^{1/n})$, URL (version: 2019-07-16): https://math.stackexchange.com/q/3294599
|
|
|
The following equations were first published in book form by Finch, Steven R. (2003). Mathematical Constants. Cambridge, England: Cambridge University Press. p. 450. ISBN 0-521-81805-2.
|
The following formulas were first published in book form by Crandall, R. E. "The MRB Constant." §7.5 in Algorithmic Reflections: Selected Works. PSI Press, pp. 28-29, 2012. They are an application of Fubini’s theorem for double series.
|
Dark Malthorp (https://math.stackexchange.com/users/532432/dark-malthorp), What are some working models that are a fit the formula for the MRB constant?, URL (version: 2020-01-12): https://math.stackexchange.com/q/3505694
|
{{u -> -3.205281240093347156628042917392342206845495258334899739232149151500845258217206440409918401887943074},
{u -> -1.975955817063408761652299553542124207955844914033641475935228264550492865978094627264109660184110877},
{u -> -1.028853359952178482391753039155168552490590931630510790413956782402957713372878008212396966920395899},
{u -> 0.02332059641642379960870201829771316178976827597634872153712935185694600973532346147587251063387838184},
{u -> 1.028851065679287940491239061962065335882572934488973325479147532561027453451485653303655759243419286},
{u -> 1.975930036556044011032057974393627818460615746707424999683678154612112980778643821981630632223625195},
{u -> 3.377688794565491686010340135121834601964847740798723565007400061225550945863584207850080547920439455},
{u -> 4.218664066279720330451890569753298644162048163522884025276106357736553673659421134883269758349165422}}
or
u=infinity
The MRB constant is defined at http://mathworld.wolfram.com/MRBConstant.html.
After a lot of looking I found a connection between the MRB constant and applied math:
The MRB constant is ∑(−1)^k(k^(1/k)−1), and that k^(1/k)−1 is the interest rate
to multiply an investment k times in k periods -- as well as other growth models
involving the more general expression (1+k)^n --
since
((k^(1/k)−1)+1)^k|k∈Z+=k. and ((k^(1/n)−1)+1)^n|n∈Z+=k.
We can say, the result of summing, with alternating signs, the interest rate to multiply an investment k times in k
periods (or the equivalent growth model) could be the end "growth" rate resulting from growth, following decay,
following growth, ad infinitum.
Real life application
Geometry
The Geometry of the MRB Constant
Authors: Marvin Ray Burns
The MRB constant is the upper limit point of the sequence of
partial sums defined by S(x)=sum((- 1)^n*n^(1/n),n=1..x). The
goal of this paper is to show that the MRB constant is
geometrically quantifiable. To “measure” the MRB constant, we
will consider a set, sequence and alternating series of the nth
roots of n. Then we will compare the length of the edges of a
special set of hypercubes or ncubes which have a content of n.
(The two words hypercubes and n-cubes will be used
synonymously.) Finally, we will look at the value of the MRB
constant as a representation of that comparison, of the length of
the edges of a special set of hypercubes, in units of dimension 1/
(units of dimension 2 times units of dimension 3 times units of
dimension 4 times etc.). For an arbitrary example we will use
units of length/ (time*mass* …).
Comments: 8 Pages. This classic paper shows the utter
simplicity of the geometric description of the MRB constant (oeis.
org/A037077).
Download: PDF
Submission history
[v1] 2016-09-06 19:08:36
{{u ->1.333754341654332447320456098329979657122884399228753780402849117971679458574998581211071632367720673},
{u -> 2.451894470180356539050514838856255986670981536525622143367559422740744344429034215340055686290476534}}
or
u=infinity
Or let x=1 and
The MRB constant is related to the following oscillating divergent series
|
are bounded within the closed interval
|
and where the MRB constant is defined as
|
The MRB constant can be explicitly defined by the following infinite sums
|
thus fulfilling the necessary and sufficient conditions for the convergence of an alternating series.
|
converges. (Remember what this means in the case of infinite sums of positive terms: it means that there is a number K such that every finite partial sum S is bounded above by K; the least such upper bound will be the number that the infinite sum converges to.) So take any such finite partial sum S, and rearrange its terms so that the terms in the m=2 column come first, then the terms in the m=3 column, and so on. An upper bound for the terms of S in the m=2 column is ζ(2)(2)2!. Put that one aside.
|
So now we check the absolute convergence of the right-hand side, i.e., that
|
which certainly converges. So we have absolute convergence of the doubly infinite sum.
Thus we are in a position to apply the Fubini theorem, which justifies the rearrangement expressed in the first of the following equations
|
giving us what we wanted.
|
then
bounds together, an upper bound for the entire doubly infinite sum would be
|
For the m=3 column, an upper bound is
|
which is 0). By calculus we have
|
for all n≥2, so this has upper
|
by an integral test, which yields
|
bound. Applying the same reasoning for the m column from m=4 on, an upper
|
bound for that column would be
|
Let x=25.65665403510586285599072933607445153794770546058072048626118194900973217186212880099440071247391598 and
I discovered the following via the Mathematica notebook to the right. ->->
Integrated analog of the CMRB series The integrated analog of the series is a complex-valued integral of oscillatory character
Not convergent in the continuum limit at , the limit of the sequence of integrals with an integral difference in the upper limits 2n exists. Ultraviolet limit MI of the sequence of oscillatory integrals The ultraviolet limit of the sequence of oscillatory integrals is defined as
and has been evaluated by Richard J. Mathar.
The decimal expansion of the real part of MI is
The decimal expansion of the imaginary part of MI is
|





m=the MRB constant. We looked at how n^m-m is similar to E^Pi-Pi (a near integer). One might think this is off the subject of breaking computational records of
the MRB constant, but it also could help show whether there exists a closed-form for computing and checking the digits of m from n^m-m=a near integer and n
is an integer.
So, I decided to make an extremely deep search of the n^m-m=a near integer, and n is an integer field. Here are the pearls I gleaned:
In[35]:= m =
NSum[(-1)^n (n^(1/n) - 1), {n, 1, Infinity}, WorkingPrecision -> 100,
Method -> "AlternatingSigns"];
In[63]:= 225897077238546^m - m
Out[63]= 496.99999999999999975304752932252481772179797865
In[62]:= 1668628852566227424415^m - m
Out[62]= 9700.9999999999999999994613109586919797992822178
In[61]:= 605975224495422946908^m - m
Out[61]= 8019.9999999999999999989515156294756517433387956
In[60]:= 3096774194444417292742^m - m
Out[60]= 10896.0000000000000000000000096284579090392932063
In[56]:= 69554400815329506140847^m - m
Out[56]= 19549.9999999999999999999999991932013520540825206
In[68]:= 470143509230719799597513239^m - m
Out[68]= 102479.000000000000000000000000002312496475978584
In[70]:= 902912955019451288364714851^m - m
Out[70]= 115844.999999999999999999999999998248770510754951
In[73]:= 2275854518412286318764672497^m - m
Out[73]= 137817.000000000000000000000000000064276966095482
In[146]:= 2610692005347922107262552615512^m - m
Out[146]= 517703.00000000000000000000000000000013473353420
In[120]:= 9917209087670224712258555601844^m - m
Out[120]= 665228.00000000000000000000000000000011062183643
In[149]:= 19891475641447607923182836942486^m - m
Out[149]= 758152.00000000000000000000000000000001559954712
In[152]:= 34600848595471336691446124576274^m - m
Out[152]= 841243.00000000000000000000000000000000146089062
In[157]:= 543136599664447978486581955093879^m - m
Out[157]= 1411134.0000000000000000000000000000000035813431
In[159]:= 748013345032523806560071259883046^m - m
Out[159]= 1498583.0000000000000000000000000000000031130944
In[162]:= 509030286753987571453322644036990^m - m
Out[162]= 1394045.9999999999999999999999999999999946679646
In[48]:= 952521560422188137227682543146686124^m - m
Out[48]=5740880.999999999999999999999999999999999890905129816474332198321490136628009367504752851478633240
In[26]:= 50355477632979244604729935214202210251^m - m
Out[26]=12097427.00000000000000000000000000000000000000293025439870097812782596113788024271834721860892874
In[27]:= 204559420776329588951078132857792732385^m - m
Out[27]=15741888.99999999999999999999999999999999999999988648448116819373537316944519114421631607853700001
In[46]:= 4074896822379126533656833098328699139141^m - m
Out[46]= 27614828.00000000000000000000000000000000000000001080626974885195966380280626150522220789167201350
In[8]:= 100148763332806310775465033613250050958363^m - m
Out[8]= 50392582.999999999999999999999999999999999999999998598093272973955371081598246
In[10]= 116388848574396158612596991763257135797979^m - m
Out[10]=51835516.000000000000000000000000000000000000000000564045501599584517036465406
In[12]:= 111821958790102917465216066365339190906247589^m - m
Out[12]= 188339125.99999999999999999999999999999999999999999999703503169989535000879619
In[33] := 8836529576862307317465438848849297054082798140^m - m
Out[33] = 42800817.00000000000000000000000000000000000000000000000321239755400298680819416095288742420653229
In[71] := 532482704820936890386684877802792716774739424328^m - m
Out[71] =924371800.999999999999999999999999999999999999999999999998143109316148796009581676875618489611792
In[21]:= 783358731736994512061663556662710815688853043638^m - m
Out[21]= 993899177.0000000000000000000000000000000000000000000000022361744841282020
In[24]:= 8175027604657819107163145989938052310049955219905^m - m
Out[24]= 1544126008.9999999999999999999999999999999999999999999999999786482891477\
944981
19779617801396329619089113017251584634275124610667^m - m
gives
1822929481.00000000000000000000000000000000000000000000000000187580971544991111083798248746369560.
130755944577487162248300532232643556078843337086375^m - m
gives
2599324665.999999999999999999999999999999999999999999999999999689854836245815499119071864529772632.
i.e.2, 599, 324, 665. 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 689
(51 consecutive 9 s)
322841040854905412176386060015189492405068903997802^m - m
gives
3080353548.000000000000000000000000000000000000000000000000000019866002281287395703598786588650156
i.e. 3, 080, 353, 548. 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,019
(52 consecutive 0 s)
310711937250443758724050271875240528207815041296728160^m - m
gives
11195802709.99999999999999999999999999999999999999999999999999999960263763...
i.e. 11,195,802,709. 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 602, 637,63
(55 consecutive 9s)
1465528573348167959709563453947173222018952610559967812891154^ m - m
gives
200799291330.9999999999999999999999999999999999999999999999999999999999999900450730197594520134278
i. e 200, 799, 291, 330.999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 99
(62 consecutive 9 s).
I did a little experimenting and found that the existence of such precise near integers from n^m-m is not specific to the MRB constant due to any internal
quality, only due to the small value of m. You can find similarly precise approximations for n^x-x, where x is 1/E. 1/E(.37) has a value in the same neighborhood
of the MRB constant (.19).
Adell-Lekuona scheme for CMRB =
|
user43208 (https://math.stackexchange.com/users/43208/user43208), Is there a more rigorous way to show these two sums are exactly equal?, URL (version: 2016-02-28): https://math.stackexchange.com/q/1675189
|
The MRB constant

Here are some record computations. If you know of any others let me know. See the full list in the above link.
On or about Dec 31, 1998, I computed 1 digit of the (additive inverse of ) CMRB with my TI-92s, by adding 1-sqrt
(2)+3^(1/3)-4^(1/4)+... as far as I could. That first digit, by the way, is just 0. Then by using the sum feature, in
approximate mode, to compute ∑1000n=1(−1)n(n1/n), I computed the first correct decimal of CMRB=∑∞n=1(−1)n
(n1/n−1) i.e. (.1). It gave (.1_91323989714) which is close to what Mathematica gives for summing to only an
upper limit of 1000.
On Jan 11, 1999, I computed 4 decimals(.1878) of CMRB with the Inverse Symbolic Calculator, with the
command evalf( 0.1879019633921476926565342538468+sum((-1)^n* (n^(1/n)-1),n=140001..150000)); were
0.1879019633921476926565342538468 was the running total of t=sum((-1)^n* (n^(1/n)-1),n=1..10000), then t=
t+the sum from (10001.. 20000), then t=t+the sum from (20001..30000) ... up to t=t+the sum from (130001..
140000).
In Jan of 1999, I computed 5 correct decimals (rounded to .18786)of CMRB using Mathcad 3.1 on a 50 MHz
80486 IBM 486 personal computer operating on Windows 95.
Shortly afterward I tried to compute 9 digits of CMRB using Mathcad 7 professional on the Pentium II mentioned
below, by summing (-1)^x x^(1/x) for x=1 to 10,000,000, 20,000,000, and a many more, then linearly
approximating the sum to a what a few billion terms would have given.
On Jan 23, 1999, I computed 500 digits of CMRB with an online tool called Sigma. Remarkably the sum in 4. was
correct to 6 of the 9 decimal places! See http://marvinrayburns.com/OriginalMRBPost.html if you can read the
printed and scanned copy there.
In September of 1999, I computed the first 5,000 digits of CMRB on a 350 MHz Pentium II with 64 Mb of RAM
using the simple PARI commands \p 5000;sumalt(n=1,((-1)^n*(n^(1/n)-1))), after allocating enough memory.
On June 10-11, 2003 over a period, of 10 hours, on a 450 MHz P3 with an available 512 MB RAM, I computed
6,995 accurate digits of CMRB.
Using a Sony Vaio P4 2.66 GHz laptop computer with 960 MB of available RAM, at 2:04 PM 3/25/2004, I finished
computing 8000 digits of CMRB.
On March 01, 2006, with a 3 GHz PD with 2 GB RAM available, I computed the first 11,000 digits of CMRB.
...
Washed away by Hurricane Ike -- on September 13, 2008 sometime between 2:00 PM - 8:00 PM EST an almost
complete computation of 300,000 digits of CMRB was destroyed. Computed for a long 4015....
...
Here is my mini-cluster of the fastest 3 computers mentioned below: The one to the left is my custom-built
extreme edition 6 core and later with an 8 core Xeon processor. The one in the center is my fast little 4 core Asus
with 2400 MHz RAM. Then the one on the right is my fastest -- a Digital Storm 6 core overclocked to 4.7 GHz on
all cores and with 3000 MHz RAM.
...


Glossary:
(~) Means, "approximately equal to."
(^) Means, "raised to the power of." 2^3 Would mean 2*2*2.
(_) Is a space holder and has no other meaning.
integral(f(x),x= a .. b) Means, "the area under the Univariant graph of f from x=a to x=b "
c^[n]d Means "raised to the power of n times." (This is called a power tower.) 2^[5]3 Would mean 2^(3^(3^(3^(3^(3))))).
Ex Means, "*10^x"
Log[y](x) means Log base y of x.
[f digits] Means, "f digits are omitted from the list."
Let m be the MRB constant = limit(sum((-1)^x*x^(1/x),x=1..2*n),n=infinity)
~0.1878596424620671202485179340542732300559030949001387861720046840894772315646...
List:
The following list of 1067 approximations brings a great deal of order to the alternating sum of integers, to rational powers, that
is the MRB Constant:
I. (10317/10000-m)*Pi*20656~ 54759.1111111117917
II. (27747/10000-m)*Pi*22509~182926.111111111448
III. (77/5000-m)*Pi*57396~-31097.0348971111111114233
IV. (20003/10000-m)*Pi*54587~ 310815.6111111111774
V. (1541/2500-m)*Pi*29079~39149.03557111111111586
VI. (10317/10000-m)*Pi*3227.5~8556.111111111217458495849
VII. (11001/5000-m)*Pi*668.64~4227.11111111157839106849
VIII. (6637/10000-m)*Pi*30013~44866.33080111111111581811
IX. (1387/2500-m)*Pi*60178~ 69371.82222222224994188159
X. (5931/2000-m)*Pi*61453~536252.0622222222235033972793939
XI. (137/1250-m)*Pi*-67517~16599.724072222222225431660362098544866664
XII. (1387/2500-m)*Pi*30089~ 34685.91111111112497094
XIII. (3067/2500-m)*Pi*21786~ 71107.92222222225589747
XIV. (7621/10000-m)*Pi*55524~ 100166.92222222227591834
XV. (2451/10000-m)*Pi*5990800~1077300.92222222226573164
XVI. (5679/2500-m)*Pi*292.72~ 1916.2222222225292227429656
XVII. (1049/10000-m)*Pi*-3185.5~30.2222222225536275
XVIII. (3887/2500-m)*Pi*529.07~ 2272.0222222222078855545
XIX. (10317/10000-m)*Pi*645.5~1711.222222222243491699
XX. (41/40-m)*Pi*53620~141018.133333333365549126204
XXI. (1591/10000-m)*Pi*-53245~4810.7433333333356470215
XXII. (929/5000-m)*Pi*-24664~159.589833333333326538631592
XXIII. (28631/10000-m)*Pi*65054~ 546747.3483333333330642325
XXIV. (28599/10000-m)*Pi*651.3~5467.3133333333369845177
XXV. (11541/5000-m)*Pi*31793~211780.98423333333333783161
XXVI. (16687/10000-m)*Pi*34310~159616.8855333333333019
XXVII. (3977/2500-m)*Pi*514930~2269537.0444444444313996143767
XXVIII. (29633/10000-m)*Pi*51685E4~4506571775.04444444440
XXIX. (13371/5000-m)*Pi*56131~438443.091674444444441129688
XXX. (28599/10000-m)*Pi*54275~455609.4444444447487098
XXXI. (407/5000-m)*Pi*-61927~20711.66044444444485108863049
XXXII. (907/2000-m)*Pi*22395~18689.384355555555508883688082
XXXIII. (20413/10000-m)*Pi*53741~312920.655555555548997716
XXXIV. (3061/5000-m)*Pi*52816~70409.24990555555555174219889
XXXV. (6669/2500-m)*Pi*59761~465558.1555555555719604270334
XXXVI. (21951/10000-m)*Pi*55178~347948.69168555555555
XXXVII. (5809/2000-m)*Pi*554.28~ 4730.545555555555
XXXVIII. (2343/2500-m)*Pi*55238/9~ 14448.5555555551188242448
XXXIX. (19817/10000-m)*Pi*66834~376644.05555555551354772180893999
XL. (41/40-m)*Pi*26.81~70.50906666666668277456310242620033
XLI. (41/40-m)*Pi*26.81*2500~176272.66666666670693640775
XLII. (28599/10000-m)*Pi*325.65~2733.65666666666849225885499
XLIII. (11541/5000-m)*Pi*63586~423561.9684666666666756632203311
XLIV. (28599/10000-m)*Pi*21710~ 182243.777777777899
XLV. (5809/2000-m)*Pi*277.14~2365.272777777777364
XLVI. (3383/1250-m)*Pi*50824~402131.07002777777777
XLVII. (11001/5000-m)*Pi*167.16~1056.77777777789
XLVIII. (7383/2500-m)*Pi*634360~5511048.7777777777
XLIX. (7383/2500-m)*Pi*634360*0.5~2755524.388888888838
L. (27609/10000-m)*Pi*62914~508561.8388888888839
LI. (13791/5000-m)*Pi*55828/9~50089.888888888619398008
LII. (9277/10000-m)*Pi*7000.81~16271.82188888888864668
LIII. (88813/50000-m)*Pi*70046~349537.027511173188888888828
LIV. (37717/25000-m)*Pi*70.1025~290.88888888873
LV. (23383/25000-m)*Pi*70165~164762.57340108888888888
LVI. (39519/25000-m)*Pi*702342~3073396.288888888882
LVII. (87547/50000-m)*Pi*703224~3453224.888888888
LVIII. (5797/5000-m)*Pi*703564~ 2147406.81888888888
LIX. (3147/2000-m)*Pi*7053.54~ 30704.8888888887
LX. (46613/25000-m)*Pi*70.6022~371.8888888880
LXI. (86201/50000-m)*Pi*706628~3410179.728126807888888888
LXII. (20851/12500-m)*Pi*7.07250~32.88888888811
LXIII. (12499/10000-m)*Pi*707288~2359865.12831262888888888689
LXIV. (21687/12500-m)*Pi*707410~3438266.6433865888888888
LXV. (6483/6250-m)*Pi*.707838~1.888888888
LXVI. (50673/50000-m)*Pi*708829~1838489.7900888888888785
LXVII. (54777/50000-m)*Pi*.31172~0.8888888888872114749998
LXVIII. (99613/50000-m)*Pi*1178~6677.717888888888223875628635565
LXIX. (73623/50000-m)*Pi*12465~50304.8888888884966506526505665
LXX. (10317/10000-m)*Pi*2582~6844.8888888889739667966792454
LXXI. (73939/50000-m)*Pi*6506~26385.38170093907888888888051
LXXII. (36447/25000-m)*Pi*703406~2806510.191450719888888888[28digits]5000005500
LXXIII. (2^5/5^3-m)*Pi*4.143~ 0.8868888888881510150214198
LXXIV. (991/1250-m)/Pi*10428~ 2007.99999999912759129
LXXV. (3127/5000-m)*Pi*2198.5~3021.9999999991518540101
LXXVI. (11499/5000-m)*Pi*64.654~428.969999999990034987157191279
LXXVII. (1011/500-m)*Pi*25223/2~72668.999999999234089
LXXVIII. (3127/5000-m)*Pi*4397/20~ 302.199999999915185
LXXIXb . log[m](exp(-m))-4466/39750 ~0.000000000519991982697690183242
LXXX. (27117/10000-m)*Pi*26405000~ 209362032.199999999991
LXXXI. (16687/10000-m)*Pi*1029~47885.0656599999999905768
LXXXII. (69517/50000-m)*Pi*700411~2645945.056249999999998089072039
LXXXIII. (9569/5000-m)*Pi*700435~ 3797899.7411159999999997055115
LXXXIV. (48827/25000-m)*Pi*1161.1~6438.99999999957818667
LXXXV. (19349/12500-m)*Pi*.702123~2.9999999995734786345744785
LXXXVI. (4638/3125-m)*Pi*702591~2861265.0879999999998315604891
LXXXVII. (16687/10000-m)*Pi*10293~47885.0656599999999905768
LXXXVIII. (3238/3125-m)*Pi*6866~18297.987299999999933137905
LXXXIX. (963/625-m)*Pi*705818E7~ 29999999959955.
XC. (38471/25000-m)*Pi*706842E7~29999999978997.
XCI. (4191/10000-m)*Pi*66353/10~4820.29999999911992
XCII. (8727/12500-m)*Pi*8281~13275.7336299999999943696339333
XCIII. (21209/25000-m)*Pi*8349~17324.3676192329899999999927873
XCIV. (1.09554-m)*Pi*.70137~ 1.99999999999
XCV. (1.54792-m)*Pi*.702123~2.999999999
XCVI. (1.98356-m)*Pi*.709049~3.99999999
XCVII. (10317/10000-m)*Pi*23238~61604.00000000076570117
XCVIII. (591/10000-m)*Pi*-27448~ 11103.000000000598443547485094
XCIX. (6791/10000-m)*Pi*3598000~ 5552711.000000000055922
C. (2579/5000-m)*Pi*5671E7~ 58425762074.0000000000636
CI. (749/1000-m)*Pi*8189~14436.17866529253000000000013055
CII. (1167/10000-m)*Pi*-534E27~119378161735144002723378303931.00000000005023871
CIII. 119378161735144002723378303931.00000000005023871
CIV. (10317/10000-m)*Pi*580.95~1540.100000000019142529252
CV. (1291/500-m)*Pi*665.46~5005.20000000026
CVI. (1291/500-m)*Pi*554.55~ 4171.000000000219243841253898
CVII. (1291/500-m)*Pi*554.55*4~16684.00000000087697
CVIII. (2579/5000-m)*Pi*28355000000~29212881037.0000000000318223
CIX. 10^10*(m +m^(1/2))^50~ 0.4619
CX. m^[33]m ~ 0.4619
CXI. m - 1/7*integral(x^(1/x),x= 6.995 .. 8.0004778) ~ 6.79548E-10
CXII. sqrt(21*(m-12500000/1290365940577206941)^5+28*Pi+7)~ 9.7452299999999999999999999999999999
CXIII. sqrt(1+5*Pi+10*(m+sin(125/37584486))^15)~4.087537555555555555555559
CXIV. sqrt((9*2+1)*m^(9*2)+9^2)~ 9.0000000000000[42 digits]7777797
CXV. sqrt(81*m+10*Pi+11)~ 7.5916110000002877600[346 digits]0000006
CXVI. sqrt(97*m^2+24*Pi+2)~ 8.9900764444444341903333633423[946 digits]44433
CXVII. sqrt(101*m^12+11*Pi+12)~6.823307070960340277777777[1289 digits]777779
CXVIII. sqrt(91*m^4+7*Pi+8)~ 5.486755555557315[1517 digits]55555425
CXIX. sqrt(78*m^5+24*Pi+4)~ 8.9115920941302_12345678
CXX. sqrt(54*m^9+25*Pi+2)~ 8.974398702741878899071864371_87654321
Let C~coth(3.1414*137/42)
CXXI. (m^150/15^23)^2 E272~ 1.12162974149
CXXII. (C*2002/13347)^23 E19~ 1.12162974149
Let A~0.11111111139059918350072154839136986358808740782084874...
CXXIII. (2002/1483*A)^23 E19~
1.1216297414869533884519414361492185566775625758888
CXXIV. (m^150/15^23)^2 E272~
1.1216297414869533884519414361492185566775625758888
CXXV. 1499/7047*m^(817/31) ~ 1.548089809999999999209209 E-20
CXXVI. 18*m^(817/31) ~ 1.310000000261907937956579 E-18
CXXVII. 1056/3901 *m^(183/68)~ 0.3007777777777314395065501985
CXXVIII. 9 *m^(183/68)~ 0.1000000662878633817200328686
CXXIX. (34/3) E129 *m^178~ 6.262087610450000000142446878298305091177204938399999
CXXX. (17/50) E130*m^178~1.8786262831350000000427340634894915273531614815199999
CXXXI. 136/2289 *m^178 ~ 3.2828768600000000000746772 E-131
CXXXII. 884/(189*109) *m^178 ~ 2.37096662111111111116504468 E-131
CXXXIII. 782/(105*109) *m^178 ~ 3.7753083890000000000858788 E-131
CXXXIV. 68/(63*109) *m^178 ~ 5.4714614333333333334577954 E-132
CXXXV. 68/(21*109) *m^178 ~ 1.64143843000000000003733863 E-131
CXXXVI. 68/(7 *109) *m^178 ~ 4.9243152900000000001120158 E-131
CXXXVII. 68/(1 *109) *m^178 ~ 3.4470207030000000000784111 E-130
CXXXVIII. 884/(21 *109) *m^178 ~ 2.1338699590000000000485402 E-130
CXXXIX. 6800/6867 *m^178 ~ 5.471461433333333333457795 E-130
CXL. 544/763 *m^178 ~ 3.9394522320000000000896127 E-130
CXLI. 680/2289 *m^178 ~ 1.64143843000000000003733 E-130
CXLII. 15640/20601 *m^178 ~ 4.19478709888888888898430984 E-130
CXLIII. 43E39 *m^(930/17) ~ 8.088888888888243454781704835
CXLIV. 29 *m^(244/55) ~ 0.017412426867700000002680807
CXLV. 33 *m^(7/39) ~ 24.44423000000055931437166579
CXLVI. 87 *m^(300/23) ~ 0.0000000293617667629999999466439786
CXLVII. .07*(4*m^3+59*m^2+138*m)-.629~ 1.333333333333006036[1019 digits]686477777417
CXLVIII. .04*m^3+5.63*m^2+7.28*m-.5665731~ 1.000000000000000072697
CXLIX. 85*m^3+580*m^2+798*m~ 170.944450000000584744821423
CL. 93*m^3+364*m^2+958*m~ 193.4321222222222330557366
CLI. 54*m^3+330*m^2+941*m~ 188.780043733333333310
CLII. 12*m^3+177*m^2+414*m+15.9~ 99.99999999999
CLIII. 71*m^3+187*m^2+500*m-1~ 99.9999999
CLIV. 3*(4*m^3+59*m^2+138*m)~ 84.09999999999
CLV. 83*m^3+485*m^2+280*m+7.510550474831~ 77.77777777777771111111111
CLVI. 10*m^3+394*m^2+279*m~ 66.38388888888822223897571467
CLVII. 39*m^3+134*m^2+159*m~ 34.8572722450999999999
CLVIII. .6*(4*m^3+59*m^2+138*m+.3)~ 16.9999999999971945956
CLIX. 10*m^3+139*m^2+723*m~ 140.7943025992222222220463012
CLX. 13*m^3+195*m^2+859*m~ 168.3394131111111112531981521
CLXI. 81*m^3+976*m^2+921*m+792~ 999.999999945290
CLXII. 95*m^3+993*m^2+385*m-8~ 99.9999999651918979
CLXIII. 10*m^3+789*m^2+421*m-7~ 99.99999999856215157258758960
CLXIV. 12*m^3+670*m^2+282*m+1.07~ 77.771111111119129159
CLXV. 31*m^3+636*m^2+147*m-16.93279~ 33.33333325333333333866206
CLXVI. 31*m^3+728*m^2+980*m+790~ 999.99999998870500815065
CLXVII. 20*m^3+788*m^2+558*m+645~ 777.767777777776444477
CLXVIII. 20*m^3+295*m^2+690*m+526.5~ 666.66666666664328829669780
CLXIX. 16*m^3+729*m^2+420*m+339.71~ 444.4444444444477868186118688
CLXX. 92*m^3+701*m^2+761*m-57.1991814~ 111.1111111111111111887830831
CLXXI. 85*m^3+272*m^2+542*m~ 111.98267798779088888888873737
CLXXII. 45*m^3+745*m^2+444*m~ 110.0000000086065208302871377
CLXXIII. 80*m^3+701*m^2+467*m-3~ 110.0000000186508900879866858
CLXXIV. 32*m^3+224*m^2+259*m-6.77303996~ 50.00000000022057310000000000
CLXXV. 67*m^3+226*m^2+165*m-.00574797332686~ 39.41111111111111111111111953
CLXXVI. 4*m^3+59*m^2+138*m+5.3~ 33.333333333328[1326 digits]4604690808000
CLXXVII. .02*(1001*m^2+25*m+2.58375203781+83/m+8/m^2)~ 14.222222222222240222222222
CLXXVIII. 1065*m^2+6*m-208.49544+99/m+7/m^2~ 555.55555555888888888390109
CLXXIX. .042*m^2+.112*m+.7381+.029/m+.003/m^2~ 1.0000000000086681088616
CLXXX. .0609*m^2+.098*m+.8864+.0063/m+.0021/m^2~ 0.9999999999991521099
CLXXXI. .03/80*(28*m^2+127*m-163+55/m+5/m^2)~ 0.111111111111148684099
CLXXXII. .27/80*(-163+5/m^2+55/m+127*m+28*m^2-41.6397974*m^16)~ 0.999999999999999999999999
CLXXXIII. 113*m^2+253*m-6.4676551+5/m+1/m^2~ 100.0000000001900000000564070
CLXXXIV. 137*m^2+148*m-45.4+24/m+3/m^2~ 200.0000000000522
CLXXXV. 191*m^2+238*m+477+46/m+8/m^2~ 1000.0000000146490190
CLXXXVI. 160*m^2+95*m+314+61/m+8/m^2~ 888.88888885188208
CLXXXVII. 2*(705*m^2+28*m+54/m+4/m^2)~ 861.8632044910000000052105089
CLXXXVIII. 3*(819*m^2+45*m+12/m+7/m^2)+404.99/4~ 1000.000000000000422
CLXXXIX. 3*(819*m^2+45*m+12/m+7/m^2)~ 898.7525000000004228495978576
CXC. 199*m^2+2*m+155.6174226+68/m+5/m^2~ 666.666666666666666
CXCI. 175*m^2+82*m-82.5066051+63/m+6/m^2~ 444.444444444444444645794
CXCII. 3/5*(921*m^2+41*m+87/m+7/m^2)~ 421.0000000060305662204104732
CXCIII. 7*(920*m^2+3*m+77/m+7/m^2)~ 4488.83034700000000811848
CXCIV. 7*(622*m^2+7*m+19/m+10/m^2)~ 2854.333333336643129342817728
CXCV. 8*(819*m^2+45*m+12/m+7/m^2)~ 2396.673333333334460932260954
CXCVI. 8*(805*m^2+4*m-312.51875+74/m+1/m^2)~ 1111.111111111507619155806615
CXCVII. 6/5*(819*m^2+45*m+.5+12/m+7/m^2)~ 360.10100000000016913983914
CXCVIII. 2/3*(819*m^2+45*m-131.67/4+12/m+7/m^2)~ 177.7777777777778717443550795
CXCIX. 127*m^2+40*m+146+1/m+6/m^2~ 333.333333363
CC. .003*(805*m^2+20*m-299/6+34/m+6/m^2)~ 1.00000000007527022828441
CCI. .0018*(805*m^2+35*m-250.7926785+97/m+9/m^2)~1.00000000000000000477249
CCII. .001*(m^2+81*m+240+92/m+9/m^2)~ 1.00000000097744
CCIII. 4*(34*m^2+35*m+1836.25+70/m+10/m^2)~ 9999.99999999042022
CCIV. 4*(72*m^2+35*m+67/m+3/m^2)~ 1803.08888888881913
CCV. 4/3*(83*m^2+29*m-542+63/m+7/m^2)~ 0.111111112265225
CCVI. 141*m^2+75*m+740+8/m+7/m^2~ 999.9999993001829
CCVII. 205/18/(m^2+(3.36951)^2)~ 1.00000000030933
CCVIII. 82/(m^2+(3.36951)^2)~ 7.200000002227
CCIX. 42/(m^2+1.78759^2)~ 12.99999990908
CCX. 47/(m^2+(3.72409)^2)~ 3.3802887631111111188556966
CCXI. 28/(m^2+(6.0653)^2)~ 0.760391111111112891
CCXIIc.
b:=1.92:evalf(log[b](log[b](log[b](log[b](log[b](4279))))))-m ~-0.000002866507074428479684637928
CCXIII. 2/(m^2+1.1329^2)~ 1.5165834741111111167
CCXIV. 7/(m^2+6.0653^2)~ 0.19009777777777822287
CCXV. 10/81-4/(m^2+5.689^2)~ 0.00000004666
CCXVI. 1246705*m~ 234205.555555671
CCXVII. 1320800 *m~ 248125.0157638982524242424
CCXVIII. 1356070 *m~ 254750.82535353535
CCXIX. 1381443 *m~ 259517.38806172538879747336037373737374
CCXX. 1184094*m~ 222443.4754814789046835485946060606060698
CCXXI. 1084856*m~ 203800.6602828282878
CCXXII. 1200382*m~ 225503.33333
CCXXIII. 230611 *m~ 43322.50000
CCXXIV. 1032449*m~ 193955.500000
CCXXV. 241849 *m~ 45433.666669808
CCXXVI. 958533 *m~ 180069.66666809
CCXXVII. 1043687*m~ 196066.66666
CCXXVIII. 147832 *m~ 27771.6666644
CCXXIX. 179171 *m~ 33658.999999
CCXXX. 135607 *m~ 25475.082535353535
CCXXXI. 197349 *m~ 37073.9125802464841139247657676767676783
CCXXXII. 61013142*m~ 11461907.04160733082125390000000000
CCXXXIII. 3389619*m~ 636772.613422629490069661111111111
CCXXXIV. 6779238*m~ 1273545.2268452589801393222222222231
CCXXXV. 76178401*m~ 2547090.45369051796027864444444444628715544
CCXXXVI. 33197349*m~ 1223439.115148133975759517270333333333383
CCXXXVII. 381070406*m~ 7641271.36107155388083593333333333
CCXXXVIII. 18 * 1129873*m~ 3820635.680535776940417966666666669
CCXXXIX. 19 * 1070406*m~ 3820635.680535776940417966666666669430733
CCXL. 140341104*m~ 26364429.620171777777777761
CCXLI. 89 * 1664161*m~ 27823953.45087913120009055297517871195947249577777777776559
CCXLII. 107* 1300136*m~ 26134009.9999906444
CCXLIII. 67 * 1359733*m~ 17114409.99999955
CCXLIV. 87 * 1583623*m~ 25882399.999999
CCXLV. 11*7841421* m~ 16203951.99999999
CCXLVI. 12*11294261*m~ 25460829.99999922
CCXLVII. 13*10252851*m~ 25039259.9999990
CCXLVIII. 14 *1913731*m~ 5033179.50000003
CCXLIX. 15 *1474995*m~ 4156380.5000000503
CCL. 16 *1091101*m~ 3279581.50000006
CCLI. cos(Pi*m/10000.000594451891)*cos(21512)~ -0.05566666607719191919191
CCLII. cos(Pi*m/10000.6104957983545455)*cos(8275)~ 0.99898989712727272727272727
CCLIII. sin(Pi*m/10001.27115472169711847)*cos(52174)~ 0.0000000003250000000000000000000035
CCLIV. sin(Pi*4772/10000)*sin(m)~ 0.1862777404387253236850333333333
CCLV. sin(Pi*m/10000)*cos(18172)~ 0.000030479999999779
CCLVI. sin(Pi*m/9999.999999927699)*cos(18172)~ 0.000030480000000000000
CCLVII. sin(Pi*m/10000)*cos(5003)~ -0.00000080846954133969184550692027084747474745647
CCLVIII. 6111852/75242941*m*Pi~ 0.047939161210000000000
CCLIX. 47405/7762247583685774069812239.84853766355085^m~1.
0000000000000000000000000000000000000000000008
CCLX. 364/21482496405*m*Pi~ 0.000000010000000000000001
CCLXI. 1-sin(8.36078938964067429831655*m)~ 0.0000000100000000000000000000000099
CCLXII. (8873+1/3)/(15034.9999946076234671*Pi)/m~ 1.0000000000000000000000
CCLXIII. (111827*19E-13)+log(m)/(.83603)~ -2.00000000000000100007
CCLXIV. 7574/(Pi^2*4085)- (.00742315089884191)/(5564446)-m~-.0000000000000000000000003464
CCLXV. 1021/10409129187630272^m-1~ 0.000000000000000000000240490204797939
CCLXVI. 24595790287828196^m /1200~ 1.0000000000000000000011
CCLXVII. 154135792244678780^m /1694~ 1.0000000000000000000001
CCLXVIII. 55665796142344335291280^m/18749~ 1.0000000000000000000000000001
CCLXIX. 2469341584186621794764147^m/38228~ 1.0000000000000000000000000000002
CCLXX. 26620/(15034.9999946076234671*Pi)/m~3.00000000000000000000009754
CCLXXI. (30070000000*m)/(17746666673)*Pi~ 1.000000000001
CCLXXII. 83/(79+(3/4))*m^(315/1629031)~ 1.0404159090220368100000000022
CCLXXIII. 7545737/1112*m^(1162/239)~ 2.0000000
CCLXXIV. 765319/314*m^(342/17)~ 6.0000001E-12
CCLXXV. 9134327/1208*m^(1251/293)~ 6.00000001
CCLXXVI. 489001/1207*m^(1285/11)~ 6.0000000001E-83
CCLXXVII. 8667721/917*m^(990/277)~ 24.0000000
CCLXXVIII. 8964887/903*m^(906/283)~ 47.0000000
CCLXXIX. 11389051/1105*m^(1175/383)~ 61.0000000
CCLXXX. 11075777/1013*m^(1028/373)~ 109.00000006
CCLXXXI. 502/717*m^(758/6361829)~ 0.7000000001
CCLXXXII. 6995399/516*m^(520/271)~ 548.00000006369209505
CCLXXXIII. 9939521/109*m^(127/397)~ 53412.000000040
CCLXXXIV. 3078871/121*m^(131/139)~ 5263.00000007644
CCLXXXV. 2319194/101*m^(120/73)~ 1470.00000007767707870505
CCLXXXVI. 7691899/104*m^(173/311)~ 29178.000000076541874350
CCLXXXVII. 229/121*m^(122/5520377)~ 1.892492050000000058
CCLXXXVIII. 3832687/222*m^(241/167)~ 1546.0000000294
CCLXXXIX. 191/1316*m^(1339/6136237)~ 0.145083832670000000000
CCXC. 117709/212*m^(223/41)~ 0.062350000000094
CCXCI. 8606501/621*m^(646/337)~ 562.0000000115910039771999
CCXCII. 9730199/615*m^(672/379)~ 816.000000078882510988555
CCXCIII. 6020039/600*m^(677/239)~ 88.0000000555608366
CCXCIV. 62/705*m^(749/3833)~ 0.06343130000000000055266
CCXCV. 6977699/705*m^(760/271)~ 91.00000009315226
CCXCVI. 5261783/718*m^(722/211)~ 24.000000013190587
CCXCVII. 489361/803*m^(808/47)~ 0.000000000200000003388
CCXCVIII. 9898081/418*m^(427/383)~ 3671.000000025100
CCXCIX. 13011769/415*m^(415/499)~ 7804.807458486649500000000303
CCC. 1161761/102*m^(162/29)~ 1.000000606
CCCI. 360973/209*m^(224/7)~ 1.000000366 E-20
CCCII. 649843/729*m^(751/13)~ 1.00000070730848 E-39
CCCIII. 772771/820*m^(889/17)~ 1.0000003077599 E-35
CCCIV. 624997/710*m^(733/13)~ 1.00000067671209 E-38
CCCV. 15823/119*m^(105/2)~ 1.000000385693129 E-36
CCCVI. 1249/203*m^(217/2)~ 1.000000511506061919 E-78
CCCVII. 504311/219*m^(213/11)~ 2.000000550015 E-11
CCCVIII. 889921/506*m^(548/19)~ 2.000000296 E-18
CCCIX. 39511/542*m^(574/19)~ 2.00000078612657 E-19
CCCX. 97739/584*m^(600/19)~ 2.00000069650 E-20
CCCXI. 487283/606*m^(673/11)~ 3.00000058850 E-42
CCCXII. 113759/808*m^(891/3)~ 3.000000753845 E-214
CCCXIII. 549247/653*m^(643/11)~ 3.000000521725 E-40
CCCXIV. 488651/707*m^(761/11)~ 4.0000002035804 E-48
CCCXV. 907259/619*m^(661/19)~ 8.00000017163829 E-23
CCCXVI. 5/514*m^(544/241861)~ 0.009691111111114
CCCXVII. 4954277/721*m^(735/197)~ 13.4197238677111111111787
CCCXVIII. 233/718*m^(782/5890813)~ 0.324440512566596451111111112230
CCCXIX. 313/521*m^(517/8123747)~ 0.60070382949111111111319
CCCXX. 8171897/551*m^(564/313)~ 728.91948111111111489952918
CCCXXI. 185138/184799*m*Pi~ 0.591261111111111
CCCXXII. (124233*m)^(1/579)~ 1.01752283221861111111111
CCCXXIII. (34004*m)^(1/286)~ 1.0311111111111
CCCXXIV. 1280/(6743-m)*Pi~ 0.5963741111111111
CCCXXV. (3007*m)/15972*Pi~ 0.1111111111
CCCXXVI. 128000/(6743-m)*Pi~ 59.63741111111111
CCCXXVII. 25600/(6743-m)*Pi ~ 11.927482222222222
CCCXXVIII. 5290/(7119-m)*Pi~ 2.3345222222222211
CCCXXIX. 673553/677250*m~ 0.1868341465622040532222222222
CCCXXX. 6045103/816*m^(874/239)~ 16.37542222222224
CCCXXXI. 505867/815*m^(871/47)~ 0.0000000000216582222222220
CCCXXXII. 369269/215*m^(230/7)~ 2.372180222222222782 E-21
CCCXXXIII. 367069/314*m^(329/7)~ 8.669462222222221144495 E-32
CCCXXXIV. 1/5*m^(582/2044753)~ 0.199904838629222222222532
CCCXXXV. 114809/509*m^(588/3)~ 1.0583333333330641030 E-140
CCCXXXVI. 249521/321*m^(325/5)~ 4.8952966385629933333333325 E-45
CCCXXXVII. 7/131*m^(127/389629)~ 0.0534059997747433333333307
CCCXXXVIII. 3565097/419*m^(491/151)~ 37.03513333333334315303
CCCXXXIX. 89/417*m^(476/1770481)~ 0.2133333333358
CCCXL. 38400/(6743-m)*Pi~ 17.89122333333333373
CCCXLI. 51200/(6743-m)*Pi~ 23.854964444444444
CCCXLII. sqrt(222272061*m/2001320676)~ 0.144444444448
CCCXLIII. sqrt(224308911*m/2019660318)~ 0.14444444444704
CCCXLIV. sqrt(25047225369*m/2031760375830)~ 0.04812384444444444
CCCXLV. (44734*m)^(1/176)~ 1.052684266438332871435555555555
CCCXLVI. 18177174/2009045*m*Pi~ 5.33973942280185555555555499
CCCXLVII. (2857*m/(5493+m))/5493~ 0.0000177872857192016631264655555555559
CCCXLVIII. 523/702*m^(753/13655303)~ 0.7449455555555555298395
CCCXLIX. 41/31*m^(352/240011)~ 1.31934133006666666668175
CCCL. 15870/(7119-m)*Pi~ 7.0035666666666635686
CCCLI. (6406-m)/(556.1*Pi)~ 3.6666666666
CCCLII. 5849/(8545-m)*Pi~ 2.15044814666666666666
CCCLIII. 283/1007*m^(1050/8971181)~ 0.28097777777777
CCCLIV. 1896893/912*m^(336/97)~ 6.34844117777777779984
CCCLV. (345454*m)^(1/229)~ 1.0495764494253839498497067777777777
CCCLVI. sqrt(2008397)*m/2013234~ 0.000132240358271617777777777627
CCCLVII. sqrt(225642243*m/2035032)~ 4.5639547349677627777777777711
CCCLVIII. 2037284/225728823*m*Pi~ 0.005326573467777777777816655
CCCLIX. (2750987/222748)^(2750987/222748)*m~ 5705023911381.823777777777762818
CCCLX. (21160*Pi)/(7119-m)~ 9.33808888888888
CCCLXI. 2020021/18194958*m*Pi~ 0.06552215776100682137001888888888873
CCCLXII. 222498057*m/sqrt(2004165828)~ 933.6688888888889
CCCLXIII. 24775385/2014272*m~ 2.310658624038888888888058
CCCLXIV. 222953823*m/sqrt(2015708274)~ 932.898888888888520000058
CCCLXV. (6099708/75191807)^(6099708/75191807)*m~ 0.1532288888888888533
CCCLXVI. 4001467/704*m^(746/167)~ 3.24199958888888888233
CCCLXVII. 1469641/1321*m^(1370/37)~ 1.440527333781922299999999 E-24
CCCLXVIII. 1502651/1344*m^(1361/37)~ 2.174237661799999999 E-24
CCCLXIX. 157/913*m^(925/5196923)~ 0.1719093999999999
CCCLXX. 13/1005*m^(1013/617777)~ 0.012899906390999999999
CCCLXXI. 10210451/809*m^(806/397)~ 423.4613418629519344999999981
CCCLXXII. 1045027/609*m^(633/67)~ 0.000236517052825830024999999999
CCCLXXIII. 573/614*m^(630/4633381)~ 0.9330126114219699999999969
CCCLXXIV. 9791387/218*m^(284/389)~ 13250.4359999999995
CCCLXXV. 2468469330/1456837459*m*Pi~ 0.99999999999958
CCCLXXVI. 163594566/2009045*m*Pi~ 48.05765480521669999999999498
CCCLXXVII. 179171/33659*m ~ 0.999999999987
CCCLXXVIII. 82277047/1375926000*Pi/m~ 0.99999999999999989
CCCLXXIX. (4761*Pi)/(7119-m)~ 2.101069999999999
CCCLXXX. 2927/6321+.7248-m~ 0.999999999999
CCCLXXXI. (2927/6321-.2752)/m~ 0.9999999999977
CCCLXXXII. 23447/3343*m~ 1.3176024638971246689999999999
CCCLXXXIII. 10^8*(17547*Pi)/(17090-2*m)~ 322567221.99999999999959698080
CCCLXXXIV. (3006.99999892152469342*m)/(8873+1/3)*Pi~0.19999999999999999999999349
CCCLXXXV. (8873+1/3)/(15035*Pi)/m~ 0.9999999996413450925906543929
CCCLXXXVI. -8.5111195811*log(m)/exp(2.65543)~ 0.999999999999999996959889
CCCLXXXVII. -7.303498607*log(m)/exp(2.50241) ~ 0.9999999999999999869
CCCLXXXVIII. sin(108.7*m)~ 0.9999999999
CCCLXXXIX. cos(34483*m) ~ 0.999999999999
CCCXC. cos(91358.21*m)~ -0.9999999999999999
CCCXCI. sin(93875.0342*m)~ -0.999999999999999999999
CCCXCII. sin(938750.342*m)~ -0.00000000018771915
CCCXCIII. m*10^-7-sin(93875034.2*m)~ 0.000000000014
CCCXCIV. 10409129187630272^m~ 1020.999999999999999999
CCCXCV. 1908259475930124531729129.85835^m~ 36420.99999999999999999999999999999993
CCCXCVI. -7.303498607*log(m)/exp(2.50241) ~ 0.9999999999999999869
CCCXCVII. 10409129187630272^m ~ 1020.999999999999999999
CCCXCVIII. 1908259475930124531729129.85835^m~ 36420.99999999999999999999999999999993
CCCXCIX. 7762247583685774069812239.84853766355085^m~47404.
999999999999999999999999999999999999999960
CD. log((500-1)*(20-1)*5)/log(155244951673715481396244796970753271017/2E13)- m~ 1.47897 E-47
CDI. 8/42.5849847~ 0.187859642462_1939572987
CDII. log(743/30)/log(26286247)~ 0.187859642462_136034935
CDIII. log(238/9)/log(37261586)~ 0.187859642462_ 656952947
CDIV. 1.0111111111887/5.3822689~ 0.18785964246206_650879148
CDV. 4.365223443*Pi/73~ 0.18785964246_31060760282194545
CDVI. (100000000-Pi)/(1612^2+22908^2+2222^2)~0.1878596424_7169281300
CDVII. 411385235*Pi/6879630000~ 0.1878596424620671_002664918879
CDVIII. log(154.1/Pi)/log(998970749)~0.187859642462067_7308822932025
CDIX. 47646565/(760885600/3-Pi)~ 0.1878596424620671202_01125804
CDX. 2181328609/11611480680.~ 0.1878596424620671202_ 80477442
CDXI. 2369638440/12613877089~ 0.1878596424620671202_73649909
CDXII. log(109/3)/log(202160761)~ 0.1878596424620_520698037
CDXIII. (316990000/9-Pi)/187486293~ 0.187859642462067_65377412349
CDXIV. (24720000-Pi)/131587586~ 0.1878596424620_734847298
CDXV. 13.7137539/73~ 0.18785964246_575342465
CDXVI. 3048549057/16227801868.70401~0.1878596424620671202485179 4466547
CDXVII. 168803.53605/ 898562~0.1878596424620671_6954422733
CDXVIII. (220403883/Pi)*m~13179619.1369110714739560692_212345678901_346061489666889023740474498888
CDXIX. (374032638/Pi)^ m~32.893441652748484023141015691242655257875_9612345678901_50440
CDXX. (519171767/Pi)*m~31045216.
003282192169895060051925965991273599032772490226884182024_5999123456789015_11
CDXXI. 196153346^m+Pi~39.26960487716933396804875588341414097100871441_90123456789_724
CDXXII. 220629353/m+Pi~1174437205.876872984952205754_90123456789_371703078
CDXXIII. 450372563/m+Pi~ 2397388591.225059559097960172586444870037748471_90123456789_5503140
CDXXIV. 682144730^m+Pi~48.
80085449973552202058439711436199885073885934834682597985235816477817_12345678901_16
CDXXV. 254076219^m~37.
92744046502427012802392281011047861965381253276204003474071363052876315562457_1234567890123
CDXXVI. 716416983/m*Pi~11980701662.16901167041582635112092836234676142515683_12345678901_4184
CDXXVII. 521014756/m*Pi~8712973730.863917901040118398292689297_12345678901_68213494
CDXXVIII. exp(9034781/250)*m~0.194772892377000808888888888176785288769996823587
CDXXIX. exp(57423587/500)*m~0.210722536526666666666510079366112523299967464899
CDXXX. exp(31586489/200)*m~0.219999999999426622682566051317683474063433486678
CDXXXI. exp(167982781/1000)*m~0.22222222225419828850955768157084109659366771301
CDXXXII. exp(223853713/1000)*m~0.23499137570657100000000003600980893583862700149
CDXXXIII. exp(12829221/50)*m~0.242810067222222222275846495047702877233193694153
CDXXXIV. exp(183108253/500)*m~0.27094385095100696666666666510087340677033754329
CDXXXV. exp(94765677/250)*m~0.274446902671893777777777748617261940526201660431
CDXXXVI. exp(573447889/1000)*m~0.333333333345242638768427398951050031725496089384
CDXXXVII. exp(14837798/25)*m~0.340088888888884206089725177398447232333293997709
CDXXXVIII. exp(171683521/250)*m~0.37331747063573145222222222242402855658373517888
CDXXXIX. exp(98166031/125)*m~0.412000000000094301592446298685239293016912895494
CDXL. exp(883778193/1000)*m~0.454625177777777771093292987310382437547973074107
CDXLI. exp(442911287/500)*m~0.455555555552628833354407270384018282715702786161
CDXLII. exp(913634537/1000)*m~0.468403281915206364444444444291354530822583577607
CDXLIII. exp(73147/25)*m*Pi~0.591907792712212975585555555555142880850251133297
CDXLIV. exp(23019069/1000)*m*Pi~0.603921399506374933333333333852760719746645495126
CDXLV. exp(4683681/200)*m*Pi~0.604162615222222222287192157739856500080269630812
CDXLVI. exp(50328313/1000)*m*Pi~0.620641301177777777770476102969203473477161462622
CDXLVII. exp(15406359/250)*m*Pi~0.627692516527167222222222238968657869126210306297
CDXLVIII. exp(10995454/125)*m*Pi~0.644444444445001327745851606737283278596099064529
CDXLIX. exp(30179923/250)*m*Pi~0.665903442766888888888896203344415185701315146027
CDL. exp(172241391/1000)*m*Pi~0.70111111111119243481217139947403949790430146441
CDLI. exp(925112/5)*m*Pi~0.710129528000000000088702438298151945701151993652
CDLII. exp(226225199/1000)*m*Pi~0.740000000000695609844576404700426795503566771871
CDLIII. exp(10874149/40)*m*Pi~0.774547286482519353174444444444408532331350720606
CDLIV. exp(35405403/125)*m*Pi~0.783419420701198649999999999972692184718327273762
CDLV. exp(328236343/1000)*m*Pi~0.819472_90123456789_6444203620448768837753645077896
CDLVI. exp(241032631/500)*m*Pi~0.955744147599999999990789543079285275900354015782
CDLVII. exp(79086351/125)*m*Pi~1.111111111732435664424081099563237433195225518741
CDLVIII. exp(128641843/200)*m*Pi~1.122859911636751085055555555550376326145984448428
CDLIX. exp(202110803/250)*m*Pi~1.324603169967999999999923308276383279989023893791
CDLX. exp(857165077/1000)*m*Pi~1.39073833894913688888888886429432718336710002521
CDLXI. exp(912840131/1000)*m*Pi~1.47036377949142539011111111116513199206954000406
CDLXII. exp(919392793/1000)*m*Pi~1.480030212201038604222222222252943991813907596239
CDLXIII. exp(939264589/1000)*m*Pi~1.509735239263233_90123456789_604918382103243121748
CDLXIV. (173754251/Pi)^ m~28.481111111111954693859
CDLXV. (201566233/Pi)* m~12053173.2274511512712282046338153464337885119037846185519991111111111665
CDLXVI. (226615512/Pi)/ m~383977936.3296022349098639106364212471111111111118298
CDLXVII. (581620758/Pi)*m~34779514.6266162795746865595791473377629311111111117153
CDLXVIII. (508624042/Pi)^ m~34.84867005566712011111111118909399
CDLXIX. (481557963/Pi)/ m~815953114.7004047491834608101023951501111111111126
CDLXX. (444584168/Pi)* m~26585057.
97985640208179677443919161033235974922794821834140190311575110663341711111111111377
CDLXXI. (403503922/Pi)^ m~33.36545764052282922700321169291391250762197649971111111111955
CDLXXII. (373678786/Pi)* m~22345087.6272597111111111166944499
CDLXXIII. (439905210/Pi)*m~26305267.
607934492007455486442322475085291128224943671090420511520630993030111111111196
CDLXXIV. 3389619*m~636772.61342262949006966111111111157178886
CDLXXV. 241301834^m~37.56166555933188923051937139969021011111111119658787
CDLXXVI. 344069310/m~1831523287.
76243121316879642241614934284059328048338989675054167706478376084610953111111111198
CDLXXVII. 352574022^m~40.
335123149562454462938827903154229603709989998497607997222489455952511111111110220
CDLXXVIII. 370740264^m~40.
71761956958652000264164373090483271530269361241668806111111111188901908359981
CDLXXIX. 88398949/m~470558486.3329527441111111111204
CDLXXX. 90746197/m~483053176.35384938014135754915621827545977006036261111111111396
CDLXXXI. 109586465^m~32.385146057450522897925401517041111111111003
CDLXXXII. 41532488/m+Pi~221082548.
895858621722081699146456344068521894159310530434173865132073883408891111111111425773
CDLXXXIII. 724127500/m+Pi~3854619816.687851424283080679220292425729123603677311111111115
CDLXXXIV. 269858926*m+Pi~50695604.
49515008239997114123826838285293981334699692946242665629030020591930891111111111645
CDLXXXV. 291938894^m+Pi~42.0718003420359304085566352704911111111115375
CDLXXXVI. 769887291/m+Pi~4098204816.
63929059788005325434276036381163638236984925305355285985209176111111111105
CDLXXXVII. 306684933*m+Pi~57613725.003475663404712904417376587202891111111111104
CDLXXXVIII. 836090372^m+Pi~50.5801311111111115197098
CDLXXXIX. 565667595/m+Pi~3011118237.9387252304712518065422761989045549103258572510820111111111177
CDXC. 516982033/m+Pi~2751958998.82843757912721111111111545797
CDXCI. 547358427*m+Pi~102826561.5364121196974418639278801111111111242
CDXCII. 517980112^m+Pi~46.4994428460265119303411265905111111111173966320089
CDXCIII. 818153118/m+Pi~4355129754.68044492819276045255976142731162643917896650076771111111111489
CDXCIV. 820808738/m+Pi~4369265946.81408122251472517285200944710111111111183
CDXCV. 736213400/m+Pi~3918954550.0111111111154
CDXCVI. 659046200^m+Pi~48.506327877381706393811111111119
CDXCVII. 187486293*m+Pi~35221111.1111110110
CDXCVIII. 422566702*m+Pi~79383232.695687516695846882243811111111113130640
CDXCIX. 443071304/m+Pi~2358523090.874316155807996317924912540592966060896693433918285111111111149
D. 451936709/m+Pi~2405714732.9098859556526343463711876311111111110081
DI. 456775293/m+Pi~2431471111.111111445566684302377900
DII. 482626151*m+Pi~90665979.3112962713389896124297290974037209097178111111111124656110199
DIII. 488986243^m+Pi~46.
03278902137963123259373398204681860841641790894465322249329799438355897211111111116112
DIV. 86646873*m+Pi~16277453.
72382879067544230033286637095145650256128867246292566699265064662759111111111140
DV. 179600984*m*Pi~105996634.
42622151185320598525480069674071288162014253744017451027662111111111184
DVI. 55023917/m*Pi~920169607.231309504181577706443749699848634277667076457111111111153
DVII. 229032839*m*Pi~135170251.1111111111875195408433
DVIII. 250496782*m*Pi~147837808.
208216192949159764567141929383340490115536627628266403833954039843111111111192
DIX. 257307499/m*Pi~4302975018.
8904320100637655716003900531118634202684443170601752165681111111111265
DX. 266277379/m*Pi~4452979079.
0614296236173090286660813516371622941119832234435905109338224209604111111111139
DXI. 293029362*m*Pi~172939621.31111111111184328207130
DXII. 304497844^m*Pi~123.
2744210085287142382701622735457181805935344857327427509924463774215200151111111111120
DXIII. 346544947*m*Pi~204523367.5301762780733380611111111114378
DXIV. 361905851/m*Pi~ 6052182086.0078503672361591119213381111111111818315
DXV. 475621018*m*Pi~280701285.97053411111111115777952
DXVI. 485024827/m*Pi~8111111111.15596952592
DXVII. 550239170/m*Pi~9201696072.31309504181577706443749699848634277667076457111111111153
DXVIII. 598713608^m*Pi~139.9700507669653731406122111111111169
DXIX. 633578031*m*Pi~ 373924114.6495736362435375586536411111111116466557109665
DXX. 637153646*m*Pi~ 376034365.649111111111186396
DXXI. 355727542/m*Pi~ 5948861703.238959802948077273292496460955195967808954829846155381111111111217
DXXII. 563415716*m*Pi~332515826.744244576496176307574233429542165618360063371111111111019591
DXXIII. 623932835^m*Pi~141.05916963352814999045681066111111111120400656006816
DXXIV. 694271017/m*Pi~11610352803.9447246859926331111111111447
DXXV. 709098183^m*Pi~144.
49087044842485036684209113404868610209893918405120816249386163911631111111111291
DXXVI. 792102736*m*Pi~467481982.9261172070247727111111111118579670
DXXVII. 827060363*m*Pi~488113221.8369642134684593091016033171568086328053253601718118718811111111118
DXXVIII. 926220952/m*Pi~15489271140.
24342493046630766261708306668746059210273770880834425418950594275188781111111111786
DXXIX. 928468825/m*Pi~15526862510.111111111170112439432
DXXX. 803539862/m*Pi~13437664919.
6246904972133004122205103024365387939406839809407087634743211111111118894
DXXXI. (428427221/Pi)^ m~33.
7432523894571492737839851487639019235042572291534977193883809655391588195786746222222222284
DXXXII. (453231024/Pi)/ m~767955872.65920446981972782127284249422222222222365966565
DXXXIII. (462204627/Pi)^ m~34.2277[27digits]92222222222 while (462204627/Pi)*m~27638718.8114015383421[27digits]
55999999
DXXXIV. (480153312/Pi)* m~28712006.
76390275945224035993538751992557673436380393105029163005222222222204
DXXXV. (370037489/Pi)*m~22127346.8734619348994057094308806936131222222222264274
DXXXVI. (178870997/Pi)/ m~303079501.0064380428280459584331348552289210202978107725140961622222222223
DXXXVII. (189212814/Pi)* m~11314468.649099050134894200433522222222221065262
DXXXVIII. (198288573/Pi)/ m~335980694.2884019555461309218068685912222222222228511
DXXXIX. (288894515/Pi)/m~489503647.4230471822123156475683458841063783645832823232222222222451760088
DXL. 71931846^m~29.9225367182208136124187772222222222816905132
DXLI. 181492394/m~966106352.70769876028271509831243655091954012072522222222222792776
DXLII. 6779238*m~1273545.22684525898013932222222222314357772
DXLIII. 28053947/m~149334612.97130218863572318289083169204523016987256769440952222222222190
DXLIV. 406941522^m~41.
4365514575486055343786051520070396598188908821603697611705265770184409460122222222224
DXLV. 319366079*m~59995997.41545228242859067816009381467761872222222222069
DXLVI. 262967570^m~38.173309684751285467888374412222222222511337
DXLVII. 161015991*m~30248406.499935417275331281433021451922222222225312
DXLVIII. 158571803^m+Pi~37.
8545422537971946140347510414821116828343637394352692387795122058959074022222222225803094977
DXLIX. 114535950/m+Pi~609688962.
93574992181560683572313418475238940797280495677115838956122222222221347
DL. 94065946^m+Pi~34.6108261636814611141716272404881974699792269614349222222222253004000
DLI. 79234643^m+Pi~33.6126389877424441220701854196224619738198817605711796852222222222531
DLII. 494413527*m+Pi~92880351.5522222222225961067611700203
DLIII. 470303068^m+Pi~45.7200374999133573122964302298222222222205
DLIV. 188075464*m+Pi~35331792.56452002962967704422222222220504560
DLV. 243385000*m+Pi~45722222.222222859651
DLVI. 406194293/m*Pi~2162222222.222092157001
DLVII. 414774683^m+Pi~44.
7268244154449788672341602237041593461680456289913771884503088569084815587994759222222222220655401
DLVIII. 313176172/m+Pi~1667075314.
770789261545090540101038979129457097755799076191703852777342702820922222222226903621161
DLIX. 518416530/m+Pi~2759595002.92809222222222298229941382432000
DLX. 612988224/m+Pi~3263011770.68381733873391705233732222222222169
DLXI. 603081315*m+Pi~113294643.35304593008753256093317776423091444618211489222222222204
DLXII. 620764284/m+Pi~3304404695.1996305359629095222222222217
DLXIII. 663986824*m+Pi~124736330.
49775614123843275220238170893254332263168314916467032887663991111474769222222222253
DLXIV. 705937330/m+Pi~3757791302.79523617364986772099643465913070575968869572312962222222222725
DLXV. 755167840*m+Pi~ 141865563.56284416272288678992367134119064230362222222222884
DLXVI. 814873697/m+Pi~4337672993.04170080442443822837651070118889366403992222222222980
DLXVII. 824007624^m+Pi~50.
450580113796079900037554146405289087914989665086252528126097436174228522222222225
DLXVIII. 190924973^m+Pi~39.08671061777752166190236763115914858922222222223466
DLXIX. 200966284/m+Pi~1069768269.31179677820685042896146420231656270198247722375822222222223287
DLXX. 693089894*m*Pi~ 409046735.06035255614667612222222222287572119
DLXXI. 236614040^m*Pi~117.5693532170272806792821222222222289338241292599
DLXXII. 52929323*m*Pi~31237747.0073237353222222222294983828
DLXXIII. 106384212^m*Pi~101.1756842064019130880609471620005067202928052222222222047
DLXXIV. 111572259*m*Pi~65847545.40838541793210591856890274237102884398873272767922222222224
DLXXV. 224577807/m*Pi~3755633617.651372042222222222260677596778770
DLXXVI. 247532105*m*Pi~146088119.664411627195241472222222222455614713
DLXXVII. 458065678*m*Pi~270340502.2222222223750390816867589
DLXXVIII. 514614998/m*Pi~8605950037.
78086402012753114320078010622372684053688863412035043313622222222225
DLXXIX. 529293230*m*Pi~ 312377470.07323735322222222229498
DLXXX. 532554758/m*Pi~8905958158.
122859247234618057332162703274324588223966446887181021867644841920822222222227
DLXXXI. 586058724*m*Pi~345879242.62222222222368656414260
DLXXXII. 711455084/m*Pi~11897723406.
47791960589615454658499292191039193561790965969231076222222222243
DLXXXIII. 724967229/m*Pi~12123688147.
546835193282991879489434826474569444314860456826066515107118591931689255222222222226962433383180000
DLXXXIV. 917142927/m*Pi~15337458562.11151897288611636219514071625522222222226079
DLXXXV. 918839431*m*Pi~542279252.0118062684509542721509558222222222272580
DLXXXVI. 976087420^m*Pi~153.
43060894953556875881814636092339541775411153454965210516757723185022222222225235
DLXXXVII. 838795486/m*Pi~14027247694.852683242750702472222222222872452271
DLXXXVIII. (569501183/Pi)/m~964964344.
477915310142632228443603556653761240416020307959269934417123333333333727
DLXXXIX. (424904085/Pi)/ m~ 719958630.61800419045599483244328983833333333333468
DXC. (444674162/Pi)/m~753457102.547575073333333333316977
DXCI. (169961634/Pi)/ m~287983452.247201676182397932977315935333333333333872374621460134
DXCII. (235283726/Pi)/ m~398665381.
5711414226909588388965545409171679219487469407913846008805154950278773333333333640
DXCIII. (333438126/Pi)*m~19938793.
484892301561347580829393707749269811920961163756051427336813329975062833333333335328
DXCIV. (274237361/Pi)*m~16398730.920233333333333753712336
DXCV. (597083819/Pi)/m~1011700437.5032268098704411043718362877023393683482033333333338991389
DXCVI. (588209315/Pi)/m~996663453.
92785355672739709724138635229291980487186735197846150220128873756969333333333341
DXCVII. (531408654/Pi)/m~ 900420260.333333333372353575136007
DXCVIII. 89892548*m~16887181.
9272842067861616703158345909379153116416592810426286673207381683333333333640138
DXCIX. 168323682/m~896007677.827813131814339097344990152271381019235406166457133333333331459
DC. 265196847/m~1411675458.998858232333333333361359
DCI. 2.83899898*m~0.5333333333329732430770
DCII. 307880091^m~39.
3209800344199921848235234740949369916062854344351597752867753425287333333333334
DCIII. 323979257/m~
1724581462.8089603718391369474907314717913483200527279215648358956600418203663333333333221800
DCIV. 416918303/m~2219307444.3021189205993578938679888183333333333691921997
DCV. 40675428*m~ 7641271.36107155388083593333333333886
DCVI. 340492138^m~40.071775639272382080574822585603333333333533218
DCVII. 343079996^m~
40.12881427741198330257900250417617454268946501801080036804715613278333333333337506304490004
DCVIII. 2327004^m~15.7059507918874667621983554265078276392906461921618593303682133333333334
DCIX. 202160761^m~36.33333333334379
DCX. 182860702^m~35.654880159632840566076477080443333333333906
DCXI. 6512517*m~1223439.11514813397575951727033333333338397985
DCXII. 355864589/m~1894311009.73087751800672116466241459563071120837654269988184633333333333
DCXIII. 359570192*m~67548727.
70913682714464668126333836375166124656663712417051466928295267333333333345605540906746741816
DCXIV. 332869432/m+Pi~1771904961.
74500028929716913099224940765442185566115344481609982807450833333333338433560807097
DCXV. 338113642^m+Pi~43.160632825952265463045944115573799422006979430726333333333323128
DCXVI. 340133358^m+Pi~43.2054327047127312683366218698986696853261939804916065533333333334206
DCXVII. 365748151*m+Pi~68709320.019614790458583333333333750
DCXVIII. 344326868/m+Pi~%26 =
1832894303.840195117424338747506032623199098466641564597455857030570431110618333333333371
DCXIX. 18410192/m+Pi~ 97999721.22216661998403651039408769983993411733333333335119
DCXX. 56334690/m+Pi~ 299876492.1079504959680863333333333155568935700
DCXXI. 81043628^m+Pi~33.742133333333338434411
DCXXII. 157555876/m+Pi~838689324.249046060813333333333186897
DCXXIII. 452201693^m+Pi~45.407248213333333333742773588
DCXXIV. 509168257^m+Pi~46.359910052610254568233333333333173
DCXXV. 593721542/m+Pi~3160452850.91002741910697498943310789094978508019842494549153333333333961
DCXXVI. 668180289*m+Pi~125524113.333333333534845
DCXXVII. 670860755*m+Pi~126027664.7177250607403897673333333333710
DCXXVIII. 748257252^m+Pi~49.
60125356735462149886882273568970890163581920046110181971305530873123463569106933333333338
DCXXIX. 720948757^m+Pi~49.277891661111233333333331039
DCXXX. 809835204^m+Pi~50.29664268018602048409026977551027743959480387159154980133333333339997
DCXXXI. 817217107*m+Pi~153522116.67649750283910818556809333333333345
DCXXXII. 23892157^m*Pi~76.4233879453206033333333335732781
DCXXXIII. 771922497/m*Pi~12908925056.
671296030191296714801170159335590260805332951180525649704333333333379712
DCXXXIV. 784346839/m*Pi~13116698376.
3760248372626353751228762645791842510088788027653333333333529397088807875808331779908
DCXXXV. 879088086*m*Pi~518818863.9333333333355298462139103
DCXXXVI. 903358348/m*Pi~15106937884.
27102722574565400217971911706609529687796458193963519201401542834082633333333338790
DCXXXVII. 995628229*m*Pi~587598347.
533214823634318078521425759248190079654291678486166540811683843333333333622859
DCXXXVIII. 957657023^m*Pi~152.
88214653437352937776436806639525749496325194283845574831935896111793333333333883245
DCXXXIX. 987076533^m*Pi~153.7536389643667404773073333333333131480490185
DCXL. 100452673*m*Pi~59285005.1262401332709609477331333333333351
DCXLI. 143701042*m*Pi~84809261.48790534118744611734282867639503826388633333333339136
DCXLII. 148519263*m*Pi~87652871.798646976317144883333333333473
DCXLIII. 696736068^m*Pi~144.01426774422464672292751441367756459722367337034733333333338702
DCXLIV. 687098517*m*Pi~405510753.333333333562558
DCXLV. 659688273^m*Pi~142.
5435923639127422942436554445032956635712875074945525886921471501333333333398483
DCXLVI. 506834866*m*Pi~299123027.109166433333333336341937230083805
DCXLVII. 454361587^m*Pi~132.90038632439748811236220865333333333327
DCXLVIII. 448880445^m*Pi~132.597717999509234148222128369361147465258850245483303613333333333658
DCXLIX. 366761048^m*Pi~127.6591179843681831827230570233735799266506039600153848633333333334424
DCL. (538283305/Pi)* m~ 32188039.7527195065074796997347588444444444415
DCLI. (502554093/Pi)/m~ 851529014.14857690860941414444444444124
DCLII. (577789030/Pi)/ m~979007294.846094364424631295136691768212756729166564646444444444490
DCLIII. (442791227/Pi)*m~26477844.444444448956635244191988
DCLIV. (378425628/Pi)*m~22628937.29819810026978840086704444444444213
DCLV. (396577146/Pi)/m~671961388.57680391109226184361373718244444444444570
DCLVI. (422233611/Pi)* m~25248548.728076016221218586982189553703444444444479
DCLVII. (239741764/Pi)/m~
406219093.2134360035143276287984822170050639859902886320957451184597898539200987537444444444403679
DCLVIII. (353564771/Pi)/ m~599081104.0659405288504444444444330
DCLIX. (357741994/Pi)/ m~606159002.
012876085656091916866269710457842040595621545028192324444444444658148
DCLX. 362984788/m~1932212705.41539752056543019662487310183908024145044444444445585552
DCLXI. 353595796/m~1882233945.33181097644444444448181
DCLXII. 308593417/m~1642680742.68432407499295501179914861249753186859824463850474444444444100
DCLXIII. 316342453^m~39.521784401391444444444432
DCLXIV. 28776.8111*m~ 5406.00144444444443491258
DCLXV. 405326255*m~76144445.3447886454089664435105555350853126420987828531793444444444458
DCLXVI. 135584760*m~25470904.536905179602786444444444462871554
DCLXVII. 129016452*m~24236984.5444444444403211421
DCLXVIII. 14.1949949*m/6~ 0.444444444444144369230899801
DCLXIX. 144371859^m~34.10652511201224219084548822978865091444444444463
DCLXX. 3751.18969/m~19968.0444444444496842016550
DCLXXI. 2170839*m~407813.0383827113252531724234444444444613
DCLXXII. 136715402^m~33.
759169655737828186482114476108546485957540170994046066480896728398378459272328444444444422
DCLXXIII. 13558476*m~2547090.4536905179602786444444444462871
DCLXXIV. 35085276*m~ 6591107.40504294444444444030
DCLXXV. 349123888^m~40.2606782298928173271491253859834447541107122434293644444444444695
DCLXXVI. 350852760*m~65911074.050429444444444403
DCLXXVII. 41790382^m+Pi~30.1620488183124302309237162749669993877938736038118671503744444444445
DCLXXVIII. 92644067*m+Pi~17404084.4444444448365939
DCLXXIX. 303720973^m+Pi~42.
362232983767920180299682657104052824366558038212459052501074893711245744444444447923900
DCLXXX. 416446463^m+Pi~44.75826060082343893584644735674075744444444446666406384
DCLXXXI. 468878428/m+Pi~2495897588.
46078425684181872482324923238685405114784842070216428396491444444444488
DCLXXXII. 481505754/m+Pi~2563114399.024818664564082257869781122768864400708154167853444444444451
DCLXXXIII. 503482707^m+Pi~46.26883684871002286812444444444454111344244
DCLXXXIV. 533231253^m+Pi~46.7364482668940050184994022191030153449993408835071546089444444444415
DCLXXXV. 597921141^m+Pi~47.684359127351198201418529865885444444444424840
DCLXXXVI. 611664691/m+Pi~3255966441.6144444444445108375
DCLXXXVII. 667252576*m+Pi~%95 =
125349833.5008459218605185901425553198421448482756594672058891255177144895626844444444441
DCLXXXVIII. 698998892^m+Pi~ 49.010689672439403102198734846134444444444418
DCLXXXIX. 733991277/m+Pi~ 3907125915.76653836228559090388726635117593592956126341753914444444444916
DCXC. 798935893/m+Pi~4252834100.60519367381471748258732713622367726927323613380013144444444448
DCXCI. 815649691^m+Pi~50.36006087708403905457982611444444444417
DCXCII. 817760050/m+Pi~4353037405.334686065502862790742244860693430627644444444441513514
DCXCIII. 831777770*m+Pi~
156257477.621688152460427331455313829546098935809305211627762713536444444444443089
DCXCIV. 738245349^m+Pi~ 49.48383205867619550666233939094444444444467
DCXCV. 526056367*m*Pi~310467143.21167203662283374742421246331527982884098929696253603333333333377
DCXCVI. 382248301*m*Pi~225594718.4629082141083333333333998794948347
DCXCVII. 594077052*m*Pi~350611487.1945879052685795333333333338934
DCXCVIII. 734488196^m*Pi~145.44895695200447561419673667999374318191483440331474931709733333333333613
DCXCIX. 683707602/m*Pi~11433699923.
4969128138186793617276657198310600998972682886624306546915444444444423411
DCC. 684820913*m*Pi~404166560.483278014153601991396980045359947024911438857595106444444444423902
DCCI. 543057105^m*Pi~137.42787313338271837493829398861598606654444444444844940
DCCII. 549762811*m*Pi~324458176.12390648408189312490461512329427355444444444471
DCCIII. 557120159^m*Pi~138.089513969324809761671924444444444919687997
DCCIV. 711242824^m*Pi~144.572865831681824929130680654047487534444444444295607999584
DCCV. 616892417^m*Pi~140.75877342303487358695850878134444444444501217417
DCCVI. 665530170^m*Pi~142.
7798795278090546492866270129705775354232235310888433220336263505767534237044444444449634699
DCCVII. 666476932^m*Pi~142.
8180144478910735677705100240114608219500975927460444941909067452444444444437
DCCVIII. 764543257*m*Pi~451216971.702458606104932085776319018229955304786744444444443927630
DCCIX. 49506421*m*Pi~29217623.9328823254390482944444444444911229
DCCX. 57989030^m*Pi~90.27536380809118271994444444444358
DCCXI. 151350811^m*Pi~108.
10328308509014757332481648186062614569686343515057639453474853000301887444444444418
DCCXII. 223144518*m*Pi~131695090.8167708358642118371378054847420576879774654553584444444444840
DCCXIII. 303768206^m*Pi~123.
21887502366425710911975966886797927557158869525636966759225252044444444445688
DCCXIV. 315251961^m*Pi~124.0808294017288924415809255104482446422339282935150806344444444442255536
DCCXV. 360920096^m*Pi~127.274692258995670039145911191354444444444510743
DCCXVI. 410610087^m*Pi~130.
39642367334195554929122992362322445606764366905376497444444444455956388435550065
DCCXVII. 432416170^m*Pi~131.67014711950792712844444444446106650022
DCCXVIII. 495064210*m*Pi~292176239.32882325439048294444444444491122942609323000
DCCXIX. 498218570^m*Pi~135.220976381240075260959317890299852989263444444444406077924
DCCXX. 502819948^m*Pi~135.4547108774948276522170452623811761578258868391651015274444444444397
DCCXXI. 748736095/m*Pi~12521176899.4209270833499669400444444444420145
DCCXXII. 916131356*m*Pi~540681004.444444444750078163373517863
DCCXXIII. 926617299/m*Pi~15495899284.5705056039133444444444448094417233
DCCXXIV. 449155614/m*Pi~7511267235.3027440844444444445213551935
DCCXXV. (367077997/Pi)/m~621977950.741800588643889125555555555428
DCCXXVI. (368250207/Pi)/m~623964146.53560363172852885478418452655555555555672
DCCXXVII. (354272436/Pi)/m~600280173.5555555555815690500906719286551367939907600998
DCCXXVIII. (351244289/Pi)/m~595149273.0902658007529781473134518631100395555555555663
DCCXXIX. (290810379/Pi)* m~17389757.3133081397873432797895736688814655555555558576
DCCXXX. (257987903/Pi)^ m~30.67648869135075831562465614162372355295025643194585591252555555555531
DCCXXXI. (505279711/Pi)/m~856147308.65819025663260927970235662338314160555555555531
DCCXXXII. (436072146/Pi)^m~33.8555555555551665529262
DCCXXXIII. (404792856/Pi)^ m~33.3854539974498324430100594794105312201502941588679269955555555550
DCCXXXIV. (222292084/Pi)* m~13292528.
989928201040898387219595805166179874613974109170700951557875553316708555555555556885825
DCCXXXV. (186839393/Pi)*m~11172543.8136298555555555583472
DCCXXXVI. (491422642/Pi)*m~29385885.442020994080137534276716775694456861675865555555555863
DCCXXXVII. 341409162/m~1817362992.5274547025731593181783506422181555555555510009563
DCCXXXVIII. 375114735^m~40.80744526440800984373938111746663623894654596127642892555555555551449
DCCXXXIX. 399681746^m~ 41.2966645124402551685602797738447100555555555577785551758883
DCCXL. 280682208*m~ 52728859.24034355555555552245
DCCXLI. 196377629/m~1045342290.79911532045006228023582184431661118910797386086665555555555336
DCCXLII. 304829492^m~39.2474921555555555510246
DCCXLIII. 296220658*m~55647906.90175826240018110595035742391894499155555555553119
DCCXLIV. 261822359^m~38.
1420239771077158225373397936697663572459220951994411739670495445107395295170055555555550159222
DCCXLV. 331128082^m~39.8623965227580518740629848590472126588555555555510887687
DCCXLVI. 172034655/m~915761643.
88121560658439821120807467142029664024169494837527083853239188042305476555555555599334
DCCXLVII. 787047574*m+Pi~147854478.9938699676065555555555511133281
DCCXLVIII. 742520952/m+Pi~3952530425.6879405805136146518477353294928158555555555522
DCCXLIX. 751966135/m+Pi~4002808297.380937039085555555555380259
DCCL. 585403216^m+Pi~47.50766480317404917236074412900172045555555555375
DCCLI. 173254879^m+Pi~38.4368625665555555555500
DCCLII. 232660092*m+Pi~43707444.
8399042962969884838633605259774464633997204201786527585996333012355555555551576589
DCCLIII. 308951659^m+Pi~42.
4882460659642431341408214604305220791060636855519565770875184956706362611355555555554204
DCCLIV. 385865675/m+Pi~2054010486.409251020767169565555555555760076
DCCLV. 302065045/m+Pi~1607929418.108904715555555555168463
DCCLVI. 513402261^m+Pi~
46.42719682221783668393408353934175759067719473212213008655835959863653179215024016555555555514
DCCLVII. 563342906*m+Pi~105829400.0462945398776447736258940264172018761326073629805555555555226599
DCCLVIII. 619137747*m+Pi~116310998.9277824233832387122421006866587274104239685174329555555555502
DCCLIX. 909021707*m*Pi~536485042.65644137152902257004859037574110484855267215555555555146370002
DCCLX. 862251723^m*Pi~149.89767419895311555555555534371591
DCCLXI. 954570631/m*Pi~15963365214.47234075252959126511373076167171862593661555555555542
DCCLXII. 719978194/m*Pi~12040256094.2378485536696299748349989602714357940245555555555275198
DCCLXIII. 640919484*m*Pi~378256882.
16825430893327769192633416238910017263677597168736741440372453525555555555221
DCCLXIV. 522397681^m*Pi~136.
4301852063877443085106006665818306531926229535424184770311486592164555555555518
DCCLXV. 497344946*m*Pi~293522280.6178549600634208700294517805162594438284045414555555555536520
DCCLXVI. 396051368*m*Pi~233740991.463058603512386355555555555928983540
DCCLXVII. 699322885/m*Pi~11694835618.814927784806386748546566219850015155555555550553
DCCLXVIII. 27072874/m*Pi~452741956.469633578825555555555243799
DCCLXIX. 475722981/m*Pi~ 7955555555.553737002454625536
DCCLXX. 100340559^m*Pi~100.0701129989602865232271311775127595297243060336322074578055555555551
DCCLXXI. 412934029^m*Pi~130.5347481336555555555583113162491
DCCLXXII. 501547958^m*Pi~135.3902723835415645555555555455250
DCCLXXIII. 667545553^m*Pi~142.861004946513909755555555555801061281595
DCCLXXIV. 670191823*m*Pi~395532786.49060159954756276642908592555555555560088980
DCCLXXV. 213632558*m*Pi~126081336.7919218296255421135715679298555555555534274500
DCCLXXVI. 174685663^m*Pi~111.054810430427494809460698464626533680588049885555555555794
DCCLXXVII. 300646558^m*Pi~122.9799992287496705461820113355120890799803496172311191055555555552614
DCCLXXVIII. 318576823*m*Pi~188017182.82455555555559319845964346980
DCCLXXIX. 336710286^m*Pi~125.62532783382497121475663156547416652555555555583107
DCCLXXX. 313407332^m*Pi~123.944112017106509705493078846331849781476467673555555555518810
DCCLXXXI. 73917568^m*Pi~94.486551019087636024034140717802032485555555555439
DCCLXXXII. 270728740/m*Pi~4527419564.6963357882555555555524379901089
DCCLXXXIII. 275119585/m*Pi~4600848036.156547520907888532218748499243171388335382285555555555765220
DCCLXXXIV. 281707858*m*Pi~166257913.372122288248088153787116714771082809180031685555555555509795651
DCCLXXXV. 291108461/m*Pi~4868231358.
73952740908961735084671922197301688870149498442555555555527951104355515
DCCLXXXVI. 146514681*m*Pi~86469810.65555555555592164103565
DCCLXXXVII. 125248391*m*Pi~73918904.
104108096474579882283570964691670245057768313814133201916977019921555555555596
DCCLXXXVIII. 816363476/m*Pi~ 13652115298.67832860509565888587188555555555510104
DCCLXXXIX. (536612991/Pi)/ m~909238503.
019314128484137875299404565686763060893432317542288486666666666987222
DCCXC. (548474722/Pi)* m~32797461.840466666666667507424
DCCXCI. (594865719/Pi)/ m~ 1007942082.8652058666383927654206057736666666666685533111
DCCXCII. (571232285/Pi)*m~34158309.06666666666605979628255457158560686
DCCXCIII. (567638442/Pi)*m~33943405.94729715040468260130056666666666319
DCCXCIV. (561511241/Pi)*m~33577014.
146680367922468823327841850082506188676142862479573371353806666666666758
DCCXCV. (339923268/Pi)/m~575966904.4944033523647958659546318706666666666677447492429202680009
DCCXCVI. (222337081/Pi)/m~ 376728551.273787536666666666658488
DCCXCVII. (228492914/Pi)*m~13663323.626666666666423
DCCXCVIII. (269929513/Pi)*m~16141132.0287487214881470756496705467269352588594702017506666666666094
DCCXCIX. (294602906/Pi)^ m~31.4509264065750520843968986666666666589595
DCCC. (308842574/Pi)^ m~31.7310607666666666633174640
DCCCI. (387758839/Pi)*m~23187040.742793170848932929816983080065541651251423661798457266666666663040
DCCCII. 179785096*m~
33774363.85456841357232334063166918187583062328331856208525733464147633666666666672802770453373370908
DCCCIII. 369721654^m~40.69657989006131322183376040779090330919694501145533035766666666662
DCCCIV. 20337714*m~3820635.68053577694041796666666666943
DCCCV. 348042679/m~1852674020.0215022809924197716539503919902927560985820986666666666282
DCCCVI. 336647364/m~1792015355.6556262636286781946899803045427620384708123329142666666666629
DCCCVII. 210511656*m~39546644.43025766666666664184346
DCCCVIII. 84161841/m~448003838.91390656590716954867249507613569050961770308322856666666666572
DCCCIX. 81656324/m+Pi~434666666.66666647714651
DCCCX. 88318397^m+Pi~34.24029970035520237932503065116477458620458149488250247423730766666666669
DCCCXI. 128944321*m+Pi~24223437.1821666666666637347
DCCCXII. 157490287/m+Pi~ 838340185.9288597875858823636766666666662903
DCCCXIII. 508588118*m+Pi~95543185.149528256666666666832
DCCCXIV. 559696069^m+Pi~47.13495778518740339540868684761919250802866112558002482877094666666666659
DCCCXV. 782203615*m+Pi~146944494.
588029055420823664872227510026956937117746021920559896666666666297
DCCCXVI. 762045224/m+Pi~4056460528.73784055092131408677809804322116609943383111194866666666667
DCCCXVII. 133072918.6755079182825583542787589649666666666645
DCCCXVIII. 647696301^m+Pi~48.35852383436759968184109287799787238698728030243205265106666666666836
DCCCXIX. 668306125/m+Pi~%97 =
3557475766.64915548926347569499676409499044678669429251902069292623047293098466666666669341
DCCCXX. 735477343/m*Pi~12299449670.8737965809688568896918590547038125387784666666666688925
DCCCXXI. 753229973/m*Pi~12596328400.4346666666666635696260
DCCCXXII. 278295404^m*Pi~121.
2081316871241527906918912716308594016555397075326493967140640973274552666666666638670
DCCCXXIII. 764496602*m*Pi~451189436.925816428216666666666799758989
DCCCXXIV. 845123574*m*Pi~498773740.11636686474426446136135014431324842754009505666666666652938
DCCCXXV. 798102524^m*Pi~147.736373551902490817840329007870819597770741501912029116566666666666441
DCCCXXVI. 966077638^m*Pi~153.1337860537944442664636692147817623666666666618537610
DCCCXXVII. 365609199^m*Pi~127.583703940114248642546337239000680099707282926666666666470
DCCCXXVIII. 494038880^m*Pi~
135.007137731421529411095050856714366837821900694459282814750864615720028990246930666666666622
DCCCXXIX. 502263365*m*Pi~296425025.6312006663548047386656666666666758597568677164616
DCCCXXX. 439544043*m*Pi~259409431.9666666666677649231069551567970800
DCCCXXXI. 297038526*m*Pi~175305743.5972939526342897666666666669467376556559
DCCCXXXII. 298577616^m*Pi~122.820566666666667268248528284
DCCCXXXIII. 30517039^m*Pi~80.01903885754381560004666666666699456
DCCCXXXIV. 242167393^m*Pi~118.
0828547856679249420506977738575436566728220626984308197666666666680369
DCCCXXXV. 197078539^m*Pi~113.
5998746979961877658593515075012582679903088127538416004161638893839467683417166666666661612
DCCCXXXVI. 122528723/m*Pi~2049058174.420114786904972186836889893790848283966666666664
DCCCXXXVII. 616595504*m*Pi~363901392.
802724309777553994325556724268231272952625495775475662271239969501481166666666662822123625
DCCCXXXVIII. 620656732*m*Pi~366298242.140907973282095662299293347693539966666666662927672
DCCCXXXIX. 673733421/m*Pi~11266900852.954116126666666666782032790336310555
DCCCXL. 633587553^m*Pi~141.466666666660586114343717373967
DCCCXLI. 640897674*m*Pi~378244010.37576548887662634071470378956666666666028235008
DCCCXLII. (177136218/Pi)/m~300140086.77777777779078452
DCCCXLIII. (357472667/Pi)/m~605702653.
6157820562715475397035096632761614934042076766192802637760353316677777777776
DCCCXLIV. (300691194/Pi)/m~509491972.
220348594495664805447099334845220351318592788820459008507777777777259
DCCCXLV. (304660953/Pi)^ m~31.649903683961050817062717777777777866323888418717
DCCCXLVI. (307297716/Pi)/m~520686080.
96201371235476874861682176307117070903287294917787777777777116860464909
DCCCXLVII. (311596329/Pi)/m~527969662.
453203073001062877125079214777777777778766020139343579000864666
DCCCXLVIII. (374074537/Pi)*m~22368752.
5799005486295993440019079498336114598437091381896325755777777777753281
DCCCXLIX. (402010438/Pi)/m~681167573.233907777777777547881808
DCCCL. (566538780/Pi)/m~959944840.824005587274659776591053117777777777779574
DCCCLI. (519161613/Pi)^ m~34.
98317543510302368475592385912898176133416241718480910551346307596662880740757777777777126
DCCCLII. (522410191/Pi)/m~ 885173240.293159377780321028242672793113005228777777777752
DCCCLIII. 83451495/m~444222579.721190737917310174514777777777724
DCCCLIV. 338727673/m~1803089096.522667777777777879
DCCCLV. 213792961^m~36.7172022932934723387835739631109161002407977777777770738211468068259195
DCCCLVI. 222450833/m~1184133164.97670637777777777905
DCCCLVII. 224431576/m~1194676903.77041750908578546312665353636184135898054155527617777777777527
DCCCLVIII. 361877021^m~40.53294978547915977777777771504050
DCCCLIX. 387876107^m~41.0647139045852257777777777766775
DCCCLX. 148110329*m~27823953.45087913120009055297517871195947249577777777776559
DCCCLXI. 140341104*m~26364429.620171777777777761228975901023
DCCCLXII. 170704581/m~ 908681496.2637273512865796590891753211090777777777755004781
DCCCLXIII. 149938369^m/9~3.81664303264094564638413762287396466377777777777249402
DCCCLXIV. 307978513/m~1639407533.
00532576502249485772342073111366170543099685816341875317777777777370
DCCCLXV. 543138726^m+Pi~
46.887478369995150852801895871789970491405683092845514989409027059068833291465237777777777841408
DCCCLXVI. 127498143/m+Pi~678688311.7587273955528549524036589723270874777777777779040
DCCCLXVII. 451888909/m+Pi~2405460287.62630328385900803175163759934981342258947777777777394
DCCCLXVIII. 190603457/m+Pi~1014605665.656291171614189319129501922257289886447107777777777975
DCCCLXIX. 211909685^m+Pi~ 39.79781561797940259937777777777939092
DCCCLXX. 219196507^m+Pi~ 40.03136910180214122741207554767048874340333888888888863429797599
DCCCLXXI. 246499606/m+Pi~1312147746.90073210037221719141500167715745777777777703
DCCCLXXII. 256600955^m+Pi~41.1395500666267985697539318918254777777777787660
DCCCLXXIII. 305111657^m+Pi~ 42.395907070952332037976764761126823214703958298593439999999999857575
DCCCLXXIV. 359960400/m+Pi~1916113518.968621354477777777773
DCCCLXXV. 307094348^m+Pi~42.
4437011509087668311960763399316802606227713437682057545077777777778972
DCCCLXXVI. 362328303*m+Pi~68066868.
5970601751415356797735941126239868477047846402332881442691359777777777762889
DCCCLXXVII. 526847778/m+Pi~2804475573.8133607242027308878109612340977777777772005070
DCCCLXXVIII. 58978359^m+Pi~31.
9685993790516804933233704608270232445974365059006928157286695895279910014691544577777777778
DCCCLXXIX. 33103476/m+Pi~176213880.51381377777777773588363935
DCCCLXXX. 646815265^m+Pi~48.34696279629092578415866510655321697286287140565777777777760
DCCCLXXXI. 680488875^m+Pi~48.7800126309886362790332453474049356821351607777777777112
DCCCLXXXII. 825606412^m+Pi~50.467810495083056672463218513062250989298780403505422677777777772365
DCCCLXXXIII. 673012364^m*Pi~143.08006380883458218862658852980858201049577777777777807835108138
DCCCLXXXIV. 674968127*m*Pi~398351658.2903045427783777777777790128
DCCCLXXXV. 716034529*m*Pi~422588164.7005046781340477777777774417962441860291339980010
DCCCLXXXVI. 719030124/m*Pi~12024401439.6241505212007777777777061147
DCCCLXXXVII. 621527424^m*Pi~140.95684806089598726452777777777743042707041979477333208
DCCCLXXXVIII. 626241955*m*Pi~369594520.
5205404823728994114178548234583512252888415690706660095848850996077777777779809
DCCCLXXXIX. 64348120^m*Pi~ 92.0573837277362123386597598999887177777777779
DCCCXC. 341446441^m*Pi~125.
955403502272154899412352219704008858227715230265975523559077777777772070259094666008889
DCCCXCI. 350732439^m*Pi~126.59192290355408077044333777777777792778131947
DCCCXCII. 426710215^m*Pi~131.3419863048522889366777777777711534
DCCCXCIII. 140853929*m*Pi~83128956.68606114412404407689355835738554140459001584277777777775
DCCCXCIV. 142426552*m*Pi~84057084.
9262787353185061537614075916420222605859502159305260920897165633_90123456789_38110
DCCCXCV. 154862005/m*Pi~2589770377.77777777240240835059
DCCCXCVI. 198025684*m*Pi~116870495.731529301756193177777777777964
DCCCXCVII. 230397211*m*Pi~135975474.09421777777777709954647
DCCCXCVIII. 909485202^m*Pi~151.
407022178578731219126446184361316551664348171500222858965697777777777680
DCCCXCIX. 797675067*m*Pi~470770652.724880121059622805033875303513341716847777777777326
CM. 975363841*m*Pi~575638741.
9738872083126783867860755777512772273853495606969220060269777777777755672
CMI. 732573405*m*Pi~432349053.27777777777960820517825859466180005
CMII. 238142994^m*Pi~117.71169909823905633605477178318878153905703667356597878312570176777777777710
CMIII. (509896620/Pi)^ m~34.86503318753077724881782783291671665299136770762874888888888880
CMIV. (485298267/Pi)/m~822290695.9122564628368593630858689775173068411442878679488888888889869
CMV. (538211841/Pi)/ m~911947598.782805307910926787761500461888888888890
CMVI. (282887668/Pi)* m~16915998.3572927602761370368254429664082998888888888007171
CMVII. (283269390/Pi)/m~479972420.4120027936373298882955265588888888888897872910357668900007
CMVIII. (477388809/Pi)/ m~808888888.88888878166185796959390657767800
CMIX. (460744073/Pi)^m~34.
207399140709948967797706456918041847868435511730624534101088888888880489850
CMX. (479483528/Pi)/m~812438186.
4268720070286552575969644340101279719805772641914902369195797078401975074888888888807
CMXI. (362748439/Pi)^m~32.
704690332193171651934698359789547506074114989233874593807205457888888888874
CMXII. (216651463/Pi)* m~12955233.49647420202542506383387873343216228948698888888888224
CMXIII. (319140537/Pi)/ m~540752588.8888888870305317627039912808848
CMXIV. (341798291/Pi)/ m~579143948.535901004879012976384888888888887998
CMXV. 364701311/m~1941349968.62692845226440137758081199658799220834338002732378888888888482821117
CMXVI. 258032904*m~48473969.088888888880642
CMXVII. 3286918*m~617479.240282132734753018070765803656788888888882974
CMXVIII. 9227488^m~20.
345018728540602111550575004874300629594158790227379176387008069926063722368375092888888888815
CMXIX. 280299033/m~1492066253.96723178472450943961583259018888888888634
CMXX. 305989351/m~ 1628818978.83834094095652608698590231524825516797785144157918431220588888888881
CMXXI. 44724272*m+Pi~ 8401888.888888893158
CMXXII. 48271806^m+Pi~30.9039233188888888884309
CMXXIII. 68745739/m+Pi~365942033.5799888888888829
CMXXIV. 370745248*m+Pi~69648072.875383058678975841556042557416339730979888888888864668
CMXXV. 402575254*m+Pi~75627646.4221085098888888888880976786
CMXXVI. 537026343*m+Pi~100885579.
93028407539739607575772489953922220881377288190551646545038683475675004888888888800
CMXXVII. 541516942^m+Pi~46.862909783928570340744718160448242888888888817411
CMXXVIII. 542635106/m+Pi~2888513463.9801526640003655809078558748095834829520888888888879089
CMXXIX. 519654916^m+Pi~46.52574447591682795721900181864148254503009931634345189444597989043843358
CMXXX. 1515816888888888819844
CMXXXI. 560102391^m+Pi~47.1409558446266023755672662014281800953111740690907795888888888872225
CMXXXII. 580797054/m+Pi~3091654210.443064268381833152935221888888888879
CMXXXIII. 598104755^m+Pi~47.68692844861598679759681487080891157714238888888888509
CMXXXIV. 635257967/m+Pi~3381556353.79988888888887656
CMXXXV. 705567379^m+Pi~49.091355863887550399509290540888888888821
CMXXXVI. 721683995*m+Pi~135575300.412888888888889
CMXXXVII. 728304177/m+Pi~3876852782.
455596672797469274748291756412837941991732480060849720710922534153285348888888888825
CMXXXVIII. 797990399^m+Pi~50.16629971028877058888028888888888482
CMXXXIX. 830686670*m+Pi~156052503.
9657977910255241735374672120247849399424596701981704392256344158370828888888888645
CMXL. 980611807^m*Pi~153.
56396127844860065694743542754977641907958622305217554335935400888888888822800491
CMXLI. 774310025/m*Pi~12948851888.8888888620120
CMXLII. 99012842*m*Pi~58435247.86576465087809658888888888898224588
CMXLIII. 380872090^m*Pi~128.567729894888888888813878252
CMXLIV. 149747219/m*Pi~2504235379.884185416669993388008888888888402
CMXLV. 103282934^m*Pi~100.
6149264126610194448733931687436237420304767593232031302337988888888880058848
CMXLVI. 105964101^m*Pi~101.
1005056398708969214958925541469521957305599752443160754762072312192633952388888888883
CMXLVII. 612473467^m*Pi~140.
568803200381651779691587940202113404752351406604149446805906415402029068988888888886612315689000
CMXLVIII. 641708195*m*Pi~378722362.
421608263802674476221437462671280499653110716495040503088888888882735883
CMXLIX. 629127718/m*Pi~10520955917.5947078888888888098357327783
CML. 695842611/m*Pi~11636634703.027028888888888978064035604247149118009
CMLI. 919003543/m*Pi~15368573800.
489191906720185470467685976737742332798463594240276565848888888888512
CMLII. 946770651*m*Pi~558763656.77107176788888888880911730711
CMLIII. 955402002*m*Pi~563857694.3212858662289942043458908096910647327359475034708199724988888888883
CMLIV. 990128420*m*Pi~584352478.6576465087809658888888888898224588521864600
CMLV. 363733339^m*Pi~127.
46047329927492202770896923247711563221632544559149697717115188888888888279
CMLVI. (342739371/Pi)*m~20494985.4399999999996358777695327429513641191921
CMLVII. (401204203/Pi)^ m~33.
32965088240077629077203049434142807801381890616923329955933766724559999999999356
CMLVIII. (561675440/Pi)^ m~ 35.504288023938346936904759600599478448531575585268380999999999939003
CMLIX. (600656311/Pi)* m~35917794.656830107328933878694357659817487452445999999999930
CMLX. (524123239/Pi)/ m~ 888075833.45665628989509220309670441008599159109999999999541
CMLXI. (287439393/Pi)^m~31.305820004815595144419616725241289339244774049018883113829999999999660
CMLXII. (245849020/Pi)^m~30.399999999997721334
CMLXIII. 575935902/m+Pi~3065777699.9999999973581899193
CMLXIV. 615724667^m+Pi~47.930556467244951189126299999999996546
CMLXV. 655582617/m+Pi~3489746967.4603188108622463420184840632932662641740576999999999994696
CMLXVI. 740689207*m+pi~139145612.
7441246764674416299625813170109383132275989410947905360334649999999999491985
CMLXVII. 550272798*m+Pi~103374054.
23047393671274765738786779743886237664472829983029854775796731087819589999999999048697999149
CMLXVIII. 510323907*m+Pi~95869269.85045784569125572152878844808714117999999999957664
CMLXIX. 532312292*m+Pi~99999999.994876
CMLXX. 131587586*m+Pi~24719999.9999991625132674334
CMLXXI. 136121854^m+Pi~ 36.8731799999999997223
CMLXXII. 136137030^m+Pi~ 36.87388644779175929001196999999999943740
CMLXXIII. 44767944*m+Pi~8410093.095194496553320155417380780203344670819085498146682101039999999999
CMLXXIV. 0.03*(47646565/m+Pi)~ 7608855.999999999998080
CMLXXV. 94412374/m+Pi~502568690.9270166975039863786849302108844418866873499613084951299999999994
CMLXXVI. 526329182*m*Pi~310628152.75169209364967182082177964174499999999995799830
CMLXXVII. 535147172^m*Pi~137.0495878463804426187803383234394586927986259999999999982
CMLXXVIII. 540084426*m*Pi~318746201.646744232637895518468336999999999930
CMLXXIX. 236843767^m*Pi~117.5907884395550721129095374296919976442699999999998668632955
CMLXXX. 113199344/m*Pi~1893042182.13548650370201476667786189999999999141
CMLXXXI. 180028142*m*Pi~106248733.88224807754596517282277899999999997
CMLXXXII. 998970749^m*Pi~154.099999999998050065256114242200541
CMLXXXIII. 784564148^m*Pi~147.2623052732127381787041581129636820284560087009070467120999999999995112
CMLXXXIV. 990558812^m*Pi~153.
855392698425955853393970759991768796568126738475147757136543137233853299999999992
CMLXXXV. 367586169/m*Pi~6147174523.2603443607149165605106696813725448518999999999921150
CMLXXXVI. 480416785/m*Pi~8034050435.9364031342744577409379999999999248748
CMLXXXVII. 411385235/m*Pi~6879629999.99999926823588054329398222510058
CMLXXXVIII. 246528496^m*Pi~118.479450315867631987296973299999999997450
CMLXXXIX. 285450047^m*Pi~121.78750619481272061995263933462646971577204759999999999812
CMXC. 201471182^m*Pi~114.071288052934920959999999999180664
CMXCI. 360056284*m*Pi~212497467.76449615509193034564555799999999995360315
CMXCII. 295185069^m*Pi~122.557184597679999999999441737
CMXCIII. 720112568*m*Pi~424994935.5289923101838606912911159999999999072063
CMXCIV. 327848654/m~1745178739.31437751598646499999999997068
CMXCV. 16273155*m~ 3057069.0800297998682077708611449666850503697282896679888888888849
CMXCVI. 70170552*m~13182214.8100858888888888806144
CMXCVII. 112215788/m~597338451.885208754542892731563326768180920679490270777638088888888887639
CMXCVIII. 69415623^m~ 29.7230485464482403285191231406408064532394999999999923
CMXCIX. 42.5849847*m~7.999999999994598646156192133
M. (352925589/Pi)/ m~597998072.
3567121340364382583448318113757518829231204111870769013207732425418160000000000460
MI. (441020723/Pi)^ m~33.927400000000002241964512532399929
MII. (397427105/Pi)^m~33.27047787998543585236033799345025548892254413580405823000000000009904642
MIII. (509884902/Pi)/ m~863950356.7416050285471937989319478060000000000016
MIV. (246902813/Pi)^ m~
30.42443651589762433091286413281384334648543693999441839647646775251424000000000072
MV. (254942451/Pi)/m~431975178.370802514273596899465973903000000000000808561932190201000707
MVI. (160980322/Pi)/m~272765492.9078061783683613560859431250566300000000006376
MVII. (202237991/Pi)^ m~ 9.30501903374813894084224683318200000000009773649773
MVIII. (528516977/Pi)/m~895520595.
00507559609160886361106429299391661924685637664995400872613513283869135488000000000028
MIX. 28247228^m*Pi~78.86558500000000006699148794009
MX. 31140049/m*Pi~520757667.
20667545886237133346878924299449208586208732761039891881470812414000000000054
MXI. 53020331^m*Pi~88.76890581161460498003448830000000000521000781
MXII. 83040629^m*Pi~96.57505830732638770860661089275265290722337130000000000577750
MXIII. 155700245/m*Pi~2603788336.
033377294311856667343946214972460429310436638051994594073540620700000000002713
MXIV. 192440023^m*Pi~113.0927187436792200000000009591
MXV. 261604160^m*Pi~119.807935955198919865161218303500000000008069070
MXVI. 283295784^m*Pi~121.6143094183314119011765846218865715927378366000000000060
MXVII. 301358019*m*Pi~177855015.37872039981288284319940000000000551585
MXVIII. 311400490/m*Pi~5207576672.
06675458862371333468789242994492085862087327610398918814708124140000000000542
MXIX. 349972951/m*Pi~5852627192.3398751632453500131575656084497000000000026031916355656599
MXX. 356492473*m*Pi~210394183.
231650015939490702689498825369574673108254572728526368876000000000044759
MXXI. 445557789*m*Pi~262958615.395940928951434650000000000420
MXXII. 467100735/m*Pi7811365008.
10013188293557000203183864491738128793130991415598378222062186210000000000814
MXXIII. 547137799^m*Pi~137.62128167255967989827342372044881144412750000000000373
MXXIV. 61013142*m~ 11461907.041607330821253900000000008292
MXXV. 425683977^m~41.78854553040322924713310361980185449070696391938000000000094
MXXVI. 269677644*m~50661545.
7818526203584850109475037728137459349249778431278860019622145050000000000920
MXXVII. 134190617/m~
714313171.47905226977430598814935197527476003295417469374563364204014034800000000008539
MXXVIII. 19978475*m+Pi~3753152.31203000000000024
MXXIX. 20347611/m+Pi~108312841.
0312347455852018000153011514077501465888366758910211349103892902520000000000490
MXXX. 72126704*m+Pi~13549699.967000000000090
MXXXI. 96917056^m+Pi~34.78784513266731487560586384454240000000000333
MXXXII. 180269304^m+Pi~38.7010000000000425855445
MXXXIII. 289540422/m+Pi~1541259308.255326189448790001000000000006
MXXXIV. 346462437*m+Pi~65086312.6829491081286668075332921768285327166921137548704804650000000000117
MXXXV. 375731931/m+Pi~2000067319.76000000000085
MXXXVI. 425397860/m+Pi~2264445173.082214287292635892088117738678404060963018779034400000000008156
MXXXVII. 463931971^m+Pi~45.6110788270105886807950000000000754444788
MXXXVIII. 488007731*m+Pi~91676961.005977282511976631573276893133125156695263800000000002578822
MXXXIX. 488425629/m+Pi~2599949745.39995759715654865699025760884020000000000904
MXL. 493553598^m+Pi~46.10776613000000000066069070583322
MXLVI – MXLX:
n n/m -sin npi/m
996509389 5304542135.50000000... 0.999999999999999993...
1749748713 9314127771.49999999998... 0.999999999999999999998032...
2502988037 13323713407.49999999882841717... 0.999999999999999993...
21993493945 117074075393.50000000089205... 0.999999999999999996...
22746733269 121083661029.4999999997... 0.9999999999999999996675...
ML. 1865915427060*Pi/m= 31203861143594.000000000098537...
MLI. 31312917495*Pi/m= 523648561636.21630000000000401...
MLII. 932957713530*Pi/m = 15601930571797.000000000049...
MLIII. 9tan(165056479/m)= 17.80800000000006...
MLIV. 9*tan(6389624821/m)= 1.43440159999999997364...
MLV. -10tan(4242361875*m)= 32.9999999999990...
MLVI. -10^5/9*tan(1017264451*m)= 6817.99999999999966...
MLVII. 300/7 log(1691238342*m)= 839.0000000000034261...
MLVIII. 9log(2886098101 *m)= 181.0000000000663617...
MLIX. 90log(5497810358 *m) = 1868.0000000000110121513...
MLX. 45*log(34007194952 *m) = 1016.000000000006746187...
MLXI. 90*log(51299614092 *m)= 2069.00000000004232090...
MLXII. 225*log(51413739994 *m) = 5173.0000000000223131...
MLXIII. – MLXVII:
n 9tan nm
4685228731 93.291254000000000074..
529840345 5.12500000000001...
5919379448 49.0000000000626...
6388397112 24.5718173000000000097...
9802010416 -4.999999999922...
7/27/2007 3:30:48 PM->->
Here are more than 224 accurate digits of the MRB constant via only the Adell-Lekuona scheme in 1.5 hr.:
m = NSum[(-1)^n (n^(1/n) - 1), {n, 1, Infinity}, WorkingPrecision -> 240,Method -> "AlternatingSigns"]; c[t_, n_] := (-1`240)^(n + t)*Sum[Binomial[n, l]*Sum[Binomial[n - l, j]*(-1)^(n - l - j)* (Log[l + j + 1]/(l + j + 1))^t, {j, 0, n - l}], {l, 0, n}]; etad[t_] := (2/3)*N[ Sum[c[t, n]/3^n, {n, 1, 500} ], 250];
In[137]:= Timing[shot = -NSum[(-1)^x etad[x]/x!, {x, 1, 120}, Method -> "WynnEpsilon", WorkingPrecision -> 240, NSumTerms -> 90]] Out[137]= {5431.39, \ 0.18785964246206712024851793405427323005590309490013878617200468408947\ 7231564660213703296654433107496903842345856258019061231370094759226630\ 4389293488961841208373366260816136027381263793734352832125527639621714\ 893217020762821} In[138]:= m - shot Out[138]= 0.*10^-224
|
PowerTower[c, 2 n]
n
The 5,500,000 digits computation using only Crandall's original method:
The latest output is
3996160 iterations in 8.6286835103426*10^6 seconds. "Sun 31 Jan 2021 13:31:16" 53.9616% done.
The 6,500,000 digits using my proven method.:
The latest output is
As of Sun 31 Jan 2021 13:00:08 there were 3055616 iterations done in 6.5532*10^6 seconds. That is 0.46628 iterations/s. 35.43101% complete. It should take 214.041 days or 1.849*10^7s, and finish Fri 18 Jun 2021 17:38:04.
The 6,000,000 digits computation using my fastest method:
The latest output is
As of Sun 31 Jan 2021 13:37:56 there were 5095424 iterations done in 8.8521*10^6 seconds. That is 0.57562 iterations/s. 64.00823% complete. It should take 160.045 days or 1.383*10^7s, and finish Tue 30 Mar 2021 03:48:12.
|
Amazing records being broken!!!!!!!!!!!!! using my home-built MRB supercomputer
|
Favorite Links
Basics
Advanced